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PREFACE

This Proceedings presents refereed versions of most of the
papers presented at the NATO Advanced Research Institute on
Homotopy Methods and Global Convergence held in Porto Cervo,
Sardinia, June 3-6, 198l1. This represents the fourth recent
occurrence of an international conference addressing the common
theme of fixed point computation. The first such conference,
titled "Computing Fixed Points with Applications,” was held in the
Department of Mathematical Sciences at Clemson University,
Clemson, South Carolina, June 26-28, 1974 and was sponsored by the
Office of Naval Research and the Office of the Army Research
Center. The second conference, "Symposium on Analysis and
Computation of Fixed Points,” was held at the University of
Wisconsin, Madison, May 7-8, 1979, under the sponsorship of the
National Science Foundation, the U.S. Army, and the Mathematics
Research Center of the University of Wisconsin, Madison. The
third conference, titled "Symposium on Fixed Point Algorithms and
Complementarity,” was held at the University of Southampton,
Southampton, UK, July 3-5, 1979 and was sponsored by U.N.E.S.C.O.,
European Research Office (London), Department of Mathematics
(University of Southampton), I.B.M. U.K., Ltd., Lloyds Bank, Ltd.,
and the Office of Naval Research (London).

The Advanced Research Institute held in Sardinia was devoted
to the theory and application of modern homotopy methods. The
following topics were stressed: Path-Following Techniques;

Bottom—Line Applications; Global vs. Classical Methods; and State-
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of-the—-Art, Perspectives and Potential. The papers presented were
selected so as to devote more or less uniform attention to these
four areas. 1In addition, workshop sessions were held on different
days in each of these four subject areas. While the papers repro-
duced herein will serve to memorialize the formal presentations,
the informal presentations and interactions during the workshops,
in spite of their value, and in spite of the efforts of several
members of the organizing committee to edit transcriptions, will
not be documented. The stimulation provided by these interactions
will hopefully be a source of future motivation for the partici-

pants and thus, indirectly, will be captured in their work.

A final and somewhat unique feature of this volume is a list
of some computer codes currently in use for implementing the
homotopy method. Descriptions of these codes have been provided
by the originators. Researchers in the field who wish to profit
from the existence of any of these codes may directly contact the

author of the code.

I am indebted to the Systems Science Programme of the
Scientific Affairs Division of NATO for their generous support of
this Institute, to Professor Jean Abadie for his initial encour-
agement, to Professor Donald Clough for his many suggestions and
thoughtful guidance, to the Organizing Committee, consisting of
Professors Michael J. Todd, James Yorke, Heinz-Otto Peitgen, and
Herbert E. Scarf, to all of the participants for their lively
contributions, and finally to Ms. Maggie Newman for her grudging
devotion and her many and varied contributions to the success of

the Institute as well as the production of this Proceedings.

F. J. Gould, Director
Chicago, Illinois
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PIECEWISE SMOQTH HOMOTOPIES

Je € Alexanderl
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Michigan State University
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1. INTRODUCTION

In (1, 2, 3, 7, 14, 16] there is developed a class of conti-
nuation methods for solving nonlinear systems of equations which
have the feature that, under broad topological assumptions which
guarantee the existence of solutions of the system, the methods are
guaranteed with probability one to generate a curve which approaches
arbitrarily close to a solution of the system. In the above papers
it is assumed that the nonlinear system is defined by smooth func-

tions. Piecewise linear techniques are similarly used; see for

1
Supported in part by the National Science Foundation.

2Supported in part by Army Research Office grant DAAG-29-80--C-0040.

1



2 J. C. ALEXANDER, T.-Y. LI, AND J. A. YORKE

example [5]. The purpose of this paper is to develop path following
methods for a class of problems including both piecewise linear and

smooth systems of equations. We formulate the method for "piece-

wise smooth functions" on a '"piecewise smooth domain,"

and we give
similar guaranteed convergence results.

The concepts of piecewise smooth manifolds and functions can
be defined in a variety of ways, to fit the problem at hand. In
[1, Appendix 1], we announced preliminary results for the simplest
useful version of these definitions. We adopt that version here.

As an illustration of the kinds of problems we want to be able
to handle, we let B be the ball in R" and let f:B > B be
piecewise smooth in the sense defined in the next section. (In

particular we assume f 1is continuous.) Following the homotopy

approach formally we choose 2z € B and write the homotopy
Fz(x,t) = (1-t)z + tf(x) - x

where t € [0,1]. The zeroes of Fz(l,x) are the fixed points of
f while 2z 1is the unique zero of FZ(O,X). When f is smooth
(CZ), it is shown in [3] that for almost every =z € B a smooth
path in B x [0,1] 1leads from (0,z) to at least one zero at

t = 1. The objective of this paper is to develop a corresponding
theory which permits f to be piecewise smooth and to show there
is a piecewise smooth path of zeroes of FZ that leads to a fixed
point (or possibly to a larger set of fixed points) of f. The
facts about the paths for FZ follow from the general theory we
develop here, and we develop only enough theory for us to handle ap-
plications. We give applications to show how the piecewise
smooth formulation can be used, and these are discussed in more de-
tail. First we consider the nonlinear complementarity problem.

We put it in our context and prove an existence result. The conti-
nuation method we develop is a nonlinear form of Lemke's algorithm.

Second we consider nonlinear constrained optimization.
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2. THE PIECEWISE SMOOTH FORMULATION

We set some notation. Let <x,y> denote the inner product in
n-dimensional Euclidean space R". For Uc R" an open set, we
speak of smooth mappings F :U - R™ where "smooth" means Ck for
k large (k = 2 is usually sufficient). If F is smooth, let
DF(x), for x ¢ U, denote the m x n matrix of first partial
derivatives of F. Let y € Rp, z € Rq, p +q =n. We denote by
Fz the map from a domain of rP to Rm defined by holding =z
fixed in (y,z). We let DyF = DFZ be the derivative of F with

respect to the y wvariables. Let I = [0,1].
For convenience we recall the development in [1]. Let M be
an n-dimensional topological manifold. Let U_,...,U_ be a finite

1’ I
open cover of M. Each is to have a smooth structure compatible

with its structure as an open topological submanifold of M (a

local smoothing of M). Suppose for each i€ {1,...,I} there are

defined smooth functions
Wi,l""’wi,J :U, - R

where J = J(i), which satisfy the following transversality condi-
tions:
i) 0 1is a regular value of each wi,j :Ui - R, 1i.e., rank
b, ;GN=1 if ¥, () =05
ii) 0 1is a regular value of each Wi,j X Wi,k :Ui - R x R if
Dy, j(X)

D\lll:k(x)) =2 i wl,J(X) = ‘yl,k(x) =0.

j# k; 1i.e., rank(

Thus the W;lj(O) are codimension 1 submanifolds of M which
I
meet pairwise transversally. For each i, Ilet

Vi = {x €M :wi’j(x) >0 for j=1,...,3(1)}.

We require that V. N V,, =¢ if i # i', that each Vi c U, and
that M = UVi. Such a collection of data we call a piecewise

smooth decomposition of M. The Vj are to be pieces on which
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things are smooth. The edges of Mi consist of those x such that
some wi j(x) = 0. The corners of Mi are those sets where for
3

some i

v, .(x) = Wi k(x) = 0

1,]

for some j # k. The Vi themselves are the regions or faces of

the decomposition. Note that an edge point that is not a corner is
either on the boundary of M or is an edge point for precisely two
faces.

A continuous map f : M - R" is called piecewise smooth if

there is a collection of smooth functions fi :Ui > RM for i =

1,...,I such that f’V, = f . Intuitively, f dis smooth on ecach
i i

face Vi but can have sharp turns at the edges. Let mw:M x I - M

be the projection. We define a piecewise smooth decomposition of

: ~ =1 v _ R
M x I by letting Ui = Ui’ Wi,j = Wi,jn' Thus Mx I is decomposed
L.

by cylinders Vi X Let A (the parameter manifold) be a smooth

manifold. Now suppose ¢: A XM >R is asmooth function and let fa(x)

= ¢(a,x) for each a € A. Let F(1 :MxI->R" be defined by
Fa(x,t) = (l—t)fa(x) + tf(x).

Similarly define Fi & :Ui x I » R" by

)

Fi,a(x’t) = (l—t)fa(x) + tf; (%) .

-1
We say Fa (0) 1is transverse to the decomposition of M x I if
for t< 1

t-0) 0 1is a regular value of each F, : U, x I > R"
i,a 1

t-i) 0 1is a regular value of each

F. x V., ,:UiXI—bRnXR

t-ii) O 1is a regular value of each
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s ~ a
. e ;
Fi,a X wi,j X wi,k 'Ui x I >R X RxR for j#k.

1

Condition t-0) implies that each F; (0) 1is a smooth curve and

_]_ )
thus Fa (0) 1is a piecewise smooth curve. Condition t-i) implies
that each F;la(O) intersects each edge transversally. Condition

b

t-ii) implies F;la(O) contains no corner points.

Recall that ¢ :A X M - R" is sufficient if rank Da¢(a,x)=11
for all (a,x). The following is the main result. A proof is
sketched in [1]. It is standard, except that extra care has to be

taken at the edges and corners.

Theorem 1. If ¢ :A x M > R' is sufficient, the set F;l(o)

is transverse to the decomposition with probability 1 in a

(i.e., for a full residual set of a).

Thus with probability 1, C = Ca = F;l(O) is a piecewise
smooth curve intersecting edges transversally and corners not at

all. In applications, one follows C from the t =0 1level to a

solution of f(x) =0 at t = 1.

3. EXAMPLES

Since most applications concern maps f :Rn - Rn, the basic
manifold M is Rn. We present the orthant piecewise smooth de-
composition. It is an easy one to visualize and is used in the
application of the next section.

Let i range over the 2" subsets of the integers 1,...,n.

For each i, let Ui = R". Let each J(i) = n. Let

Xj j €1,

Note that

wi,j(xl" . .,xn) = (0,...,0,*1,...,0)

(here the +*1 1is in the jth position)
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and

(0,...,0,11,0,...,0,0,0,...,0)

D(V,
. 0,...,0,0,0,...,0,#1,0,...,0

3 x wi’k)(xl,...,xn) =

(here the *1 are in the jth kth columns).

Thus conditions (i), (ii) are satisfied and we have defined a piece-

: e n .
wise smooth decomposition of R, the orthant decomposition. Note

Veo= g, eex ) Xy > 0 if j € i and x; < 0 if j ¢ i}.

The edges are the coordinate hyperplanes and the corners are where
two or more coordinate hyperplanes intersect. If a curve C is
transverse to the orthant decomposition (or its product with 1I),
at each edge exactly one coordinate of the position vector of C
changes sign.

The orthant decomposition is of course actually piecewise
linear, and it could be hoped a simpler theory could be used. How-
ever, we are considering functions that are not piecewise linear,
and it seems the full concept of piecewise smooth manifolds is
needed. Of course, an actual implementation might benefit from the
simplicity of the orthant decomposition.

The definition is flexible enough to accommodate manifolds with
"sharp bends'". For example, the surface of a cube in three-
dimensional space is topologically equivalent to the surface of a
sphere, however, the surface of the cube has a different piecewise
differentiable structure.

To illustrate in more detail, we consider the simplest case.
Suppose M 1is the union of the non-negative parts of the two-

dimensional space:

M = {(x,y) :x=20 or y=>0}.
We put the natural piecewise differentiable structure on M. Let
Ul = U2 = M. Both U, are to be smoothly like Rl via the homeo-
i
1

morphism h :Ui - R7:
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h(x,0) = x,

h(0,y) = -y.
Then the functions V., :U 4-Rl Vv, : U, - Rl-
1771 ’ 2772 .
v (x,0 = x V,(x,0) = -x,
\,/1(0’}7) = -y, \112(01}7) =Yy

are smooth. The required conditions on the Wi are satisfied. The
faces Vl’ V2 are respectively the positive x- and y-axes. The
sole edge is the origin.

A function on M defines a piecewise smooth function if it is
smooth on each axis (using one-sided derivatives at the origin).
Each of the two pieces of the function—one on each axis—can be
extended smoothly to all of the Ui' Note that the Ui are tech-
nical artifacts. For manifolds with sharp bends, the key require-
ment for piecewise smooth functions is that good one-sided deriva-

tives exist at the edges. The example we present of constrained

optimization is a more complicated case in point.

4. NONLINEAR COMPLEMENTARITY
Let g : R" > R" be smooth. The complementarity problem is to

find an x € R" such that

x = 0, g(x) = 0, <x,g(x)> = 0.

If s ¢ R, let s+ = max(0,s), s =min(0,s) and if x =

n + + + . .
(Xl’ "Xn) € R, let x = (xl,...,xn We write x < y 1if each
+
X; < Yo i=1,...,n. Let Rz = {x:x = x}. Consider the map
£:R" > R" defined by
- +
f(x) = x + g(x).

0 € Rn, then xg is a solution of the

complementarity problem associated with f. For f(xo) = 0 implies

If f(xo) =0 for some X
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+ + - + o+ + o+
0 = <x0,f(x0)> = <XyXy> + <x0,g(x0)> = <x0,g(x0)>

+ =
and g(xo) = X 2 0.
Moreover, note that f(x) 1is piecewise smooth with respect to
n n_ n n
the orthant subdivision of R . So we set ¢:R xR —- R as

¢(z,x) = x - z. Thus the homotopy

F(x,t) = te(x) +x - (1-t)z.

Since —Dz¢ is the identity matrix, ¢ 1is sufficient. Thus for
almost all =z, F;l(O) is a piecewise smooth curve transverse to
the decomposition. Let C = CZ be the component continuing (z,0).
To ensure the curve converges to a solution, we use a variation of a
condition of Eaves [4]. Related conditions are in [5, 8, 11, 12,
17].

Eaves' condition is: for a non-empty open set @ of =z > 0,
there is a bounded set U(z) which intersects any closed unbounded
connected set in R: which contains O (i.e., U(z) separates 0
from « in Ri), and such that for each x € U(z) there is

w € R' such that
+
<x-w,z> > 0 and <x-w,g(x)> = 0.

Let - = {z € RBP:-z € Q}.

Theorem 2. Suppose Eaves' condition holds. For almost all

z € -, the curve C = CZ is a piecewise smooth curve containing

(z,0) € Rn x I and eventually remaining arbitrarily close to the
s y g y to

(non-empty) set {(£ 1(0),1)} ¢ R® x I.

Proof. We need only prove the last statement. First note that
if (x,0) € C, then x = z. This is because x =z, thus all
componentsof x are non-zero and x+ = 0. Thus C cannot return
to the t = 0 level. Next we show C 1is bounded. If not, there

+ -
exist (x,t) on C with either |x | >« or |x | > . Suppose
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+ . - + )
|x | remains bounded. Then x = -tg(x ) + (1-t)z also remains
+
bounded. Thus |x | - =. Consider the set U(-z) from Eaves' con-

dition. It is bounded, say it is contained in the ball of radius
%—P. The set

6" = {&:(x,t) €€}

. " n . .
is unbounded and connected in R+ and contains 0. There is some

ty < 1 such that (XO,tO) € C with IXSI > P. Consider the set

n . IX+I

C+ = {x+ :(x,t) €C, t < to} U {X+ € R+

0 > P}.

It is a closed, unbounded, connected set in Ri which contains O.
By Eaves' condition, the set U(-z) intersects Cy-  So, there

+
is (x,t) € C such that x € U(-z). Let w =0 be as in Eaves'

condition. Then

+ +, _+ -+ +
0 = <Fz(x,t),x -w> = t<g(x ),X -w> + <x ,x -w> - (l-t)<z,x -w>

+ + - +
t<g(x ),X -w> - <x ,w> - (1-t)<z,x -w>

> 0

since t < 1. Thus C must remain bounded. The rest of the argu-

ment is standard (e.g. [7], Theorem 2.2).

5. CONSTRAINED OPTIMIZATION
Let f(x) and gi(x), 1 <=1i=m be smooth real valued func-

" n
tions on R . We consider the nonlinear programming problem:
minimize f(x) with gi(x) = 0.

As is well known [10] if x* is a solution of this problem, there

exist numbers Xj’ 1 <3j<m (Lagrange multipliers) such that
m
Df (x*) + ) Xngj (x* = o0
(5.1) 1

IA
[
IA
=]

(x*) =0, X\, =20, rg % =o0, 1
& ) b 383
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This formulation is the one actually solved. To show x* is ac-
tually a minimum ysually requires further checking. Homotopy me-
thods for solving such non-linear problems have been developed in
[9, 13, 15].

Equations (5.1) look something like a complementarity problem.
That observation leads to the following homotopy method. Consider

the mapping G :Rn+m e Rn+m defined by

T+
Df(x) + ) \.Dg.(x)
1 4 J
G(x,\) =

Ao () l<i<m.

Then (5.1) holds if G(x,\) = 0. Moreover, G 1is piecewise
n+m

smooth with respect to the orthant decomposition of R . Let
n .
R = {x €R :gi(x) <0 i=1,...,m}.

Assume  # ¢. Consider the homotopy F :Q x Rn+m x I - Rn+m de-
fined by

o b

t [Df (x) +) A;Ds; (x) 1+ (1-t) (x-2)
1
F(z,x,\,t) =

ey (0

l<i<m.

This would seem to give a reasonable homotopy algorithm. However,
as is, it cannot be proved to be by the general theory. The reason
is that DFZ never has full rank: the last m rows are always
zero. Indeed 2z ranges over an n-dimensional set and the range
is (m+n)-dimensional. The problem is that the constraints

X; - gi(x) = 0 are independent of z. For certain innocuous g,

(e.g., some gi(x) = xi), there are families of curve with seg-

ments totally contained within edges of the orthant decomposition.
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We overcome this problem by reinterpreting the homotopy problem on
an n-dimensional manifold, although an implementation can use the
above F directly.

We need a standard condition on the 8- For any x € §; let

I(x) = {i :gi(x) = 0}. We assume: for any x, the vectors

(Dgi(x))iEI(x) are linearly independent.

Let

IA

M = {(x,\) :gi(x) <0, Xi > 0, Xigi(x) =0, 1 i = m}.

It is straightforward, using the above condition, to put a piecewise
smooth structure on M so that the following sets VI are the re-
gions. Let I € {l1,...,m} be an arbitrary subset (possibly empty).
Then

v, = {(x,\) :gi(x) =0 for i €1, xj =0 for j ¢ T}.

Thus the manifold M incorporates the constraints gi(x) =0
in its definition. The homotopy F on M becomes

m
F(z,g,\,t) = ¢t[Df(x) + 2 xiDgi(x)] + (1-t) (x-2z).
l 3

This homotopy has the standard form with ¢(x,z) = x-z. Tt is triv-
ial that ¢ 1is sufficient; thus for almost all z € &, the set
F;l(O) is a piecewise smooth curve. It is precisely the curve ob-
tained from the earlier homotopy; we now know for almost all =z it
is well-behaved at edges and misses corners.

To get a convergence result, we impose rather standard condi-

. : ; n
tions. Assume & 1is convex. Assume there is a compact set A C R

such that for x ¢ A,

<x,Df(x)> > 0, <x,Dgi(X)> > 0, i=1,...,m.

Theorem 3. Under these assumptions and the assumption on the
Dgi(x), for almost all =z ¢ @, the set C = F; (0) 1is a piecewise



