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preface

This book is designed for use in a course having from three to six semester hours
of credit, such as a three-hour course for one semester, a two-quarter course,
or a three-hour course for the full academic year. No previous study of statistics
is assumed, and a standard two-semester course in calculus should provide an
adequate mathematical background. For that matter, the material is organized
in such a way that little multiple integration is needed until the last few chapters.

Our aim is to provide a book, at this mathematical level, that emphasizes
fundamental concepts and presents them in a logical order. Probability and
distributions of the discrete type are treated first. The usual descriptive statistics
are found by computing the characteristics of a discrete-type empirical distribu-
tion. Histograms and ogives motivate the definitions of probability density
and distribution functions of the continuous type. Certain basic sampling
distribution theory is immediately used to make some elementary statistical
inferences, the first of which is distribution-free and is based on the order
statistics. The probabilities associated with these inferences are easy to deter-
mine using the binomial distribution and provide good applications of approxi-
mating distributions. After some of the standard parametric and nonparametric
inferences involving one and two distributions, multivariate distributions are
introduced. We feel that the student is better prepared to understand them at
this stage, and they provide the necessary background for chi-square tests
and the analysis of variance. The final chapter concerns certain interesting
theoretical problems, most of which are treated more fully in an advanced
course in mathematical statistics.

Although it is not necessary to have a computer available to study this text,
we have included some computer output to make certain theories (like the
central limit theorem) more plausible.

We are indebted to the Biometrika Trustees for permission to include
Tables III and V, which are abridgments and adaptations of tables published
in Biometrika Tables for Statisticians. We are also grateful to the Literary
Executor of the late Sir Ronald A. Fisher, F.R.S., to Dr. Frank Yates, F.R.S.,
and to Longman Group Ltd, London, for permission to use Table III from
their book Statistical Tables for Biological, Agricultural, and Medical Research
(6th Edition, 1974), reproduced as our Table VI.
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Finally, we wish to thank our colleagues and friends for many suggestions,
Mrs. Mary DeYoung for her help with the typing, and our families for their
patience and understanding during the preparation of this manuscript.

R.

V. H.
E.A. T.
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1

PROBABILITY

1.1 Random Experiments and Random
Variables

Many decisions have to be made that involve uncertainties. In medical research,
interest may center on the effectiveness of a new vaccine for mumps; an agron-
omist must decide if an increase in yield can be attributed to a new strain of
wheat; a meteorologist is interested in predicting the probability of rain; the
state legislature must decide whether decreasing speed limits will help prevent
accidents; the admissions officer of a college must predict the college per-
formance of an incoming freshman. Probability and statistics can provide the
models that could help people make decisions such as these.

In the study of probability we shall consider random experiments. Each
experiment ends in an outcome that cannot be determined with certainty before
the performance of the experiment. However, the experiment is such that the
collection of every possible outcome can be listed; and this collection of all
outcomes is called the outcome space or, more frequently, the sample space S.

The following examples will help illustrate what we mean by random
experiments, outcomes, and sample spaces:
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Example 1.1-1. Consider the flip of an unbiased coin as a random ex-
periment. The outcome is heads (H) or tails (T) and the collection § = {H, T}
is the sample space.

Example 1.1-2. Flip an unbiased coin three times and observe the se-
quence of heads and tails. Here the sample space is the collection of sequences

S={H H H),HHT),HT,H),(T, HH),
(H, T, T), (T, H, T), (T, T, H), (T, T, ).

Example 1.1-3. From a bow! containing three red (R), two white (W),
and five blue (B) chips, draw one at random and observe its color. Here
S = {R, W, B}

Example 1.1-4. Each of six students selects an integer at random from the
first 52 positive integers. We are interested in whether at least two of these six
integers match (M) or whether they are all different (D). Thus, § = {M, D}.

Example 1.1-5. A light bulb is turned on continuously and we observe
the time ¢ until it burns out. Here S = {¢t: 0 <t}.

Example 1.1-6. A three-month-old chicken is selected from a flock of
chickens and weighed. The sample space is S = {w: 0 <w < 9}. Note
that 9 pounds is, perhaps, too large. In addition we are victims of the accuracy
with which we can weigh chickens; thus, we might more realistically describe
SasS={w: w=05,06,...,50} However, it is often easier to work
with a mathematically “idealized” sample space rather than a more realistic
one.

Let S denote a sample space, and let A be part of this collection S. Suppose
the performance of the random experiment terminates so that the outcome is in
A. Then we shall say that event A has occurred. Now consider the possibility
of repeating the experiment a large number of times, say n. Then we can count
the number of times that event A4 actually occurred throughout n performances;
this number is called the frequency of event A and is denoted N(A). The ratio
N(A)/n is called the relative frequency of event A in these n experiments. A
relative frequency is usually very unstable for small values of n, but it tends to
stabilize as n increases. Possibly you should check this by tossing a coin a
large number of times, computing the relative frequency after each toss. This
suggests that we associate with event 4 a number, say p, that is equal or approxi-
mately equal to the number about which the relative frequency seems to
stabilize. This number p can then be taken as that number which the relative
frequency of event 4 will be near in future performances of the experiment.
Thus, although we cannot predict the outcome of a random experiment with
certainty, we can, for a large value of n, predict fairly accurately the relative
frequency associated with event A. The number p assigned to event 4 is called
the probability of event A, and it is denoted by P(4).
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To illustrate some of these ideas, we performed the following two random
experiments.

Example 1.1-7. Four unbiased coins are to be tossed and the number of
heads observed. Here the sample space S = {0, 1, 2, 3, 4}. Let the event
A = {0, 4}; that is, A occurs when the coins are all heads or all tails. This
experiment was actually repeated a large number of times, and each time
we recorded whether or not A had occurred. After 50 trials, the frequency
of A was N(A) = 4, after 100 trials, N(4) = 11; after 500 trials, N(A4) = 49;
and after 1000 trials, N(4) = 118. These results provide the relative fre-
quencies of 0.080, 0.110, 0.098, and 0.118, respectively. Accordingly, we
believe that the probability P(A4) of the event A is close to 0.118. Later we
will learn, if certain assumptions are fulfilled, that P(4) equals 0.125.

Example 1.1-8. A pair of fair dice is to be cast and the sum of the dots
on the top of the dice observed. Here

S =1{234,5678,9, 10, 11, 12}.

Let 4 = {7}; that is, A occurs when the sum of the dots equals 7. After
repeating the experiment a large number of times, we observed these
combinations of the number n of trials and the frequency N(A4) of 4:

n = 50, N(4) = 10;
n=100, N(A)=17;
n=500, N(4)=8l;
n=1000, N(A) = 175.

From these observations, the calculated respective relative frequencies
N(A)/n are 0.200, 0.170, 0.162, and 0.175. Other considerations later in the
book allow us to assign the probability P(4) = 1/6 = 0.167 to the event A;
this is near the relative frequency 0.175.

Note that a sample space S may be difficult to describe if the elements of S
are not numbers. We shall now discuss how we can use a rule by which an
element s of S may be associated with a number x. We begin the discussion
with a simple example.

Example 1.1-9. In Example 1.1-1, we had the sample space S = {H, T}.
Let X be a function defined on S such that X(H) = 0 and X(T) = 1. Thus, X
is a real-valued function that has the sample space S as its domain and the
space of real numbers {x: x = 0, 1} as its range. We call X a random
variable and, in this example, the space associated with X is {x: x = 0, 1}.

We now formulate the definition of a random variable.
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DEFINITION 1.1-1. Given a random experiment with a sample space S, a
function X that assigns to each element s in S one and only one real number
X(s) = x is called a random variable. The space of X is the set of real numbers
{x: x = X(s), s € S}, where s € S means the element s belongs to the set S.

It may be that the set S has elements that are themselves real numbers. In
such an instance we could write X(s) = s so that X is the identity function and
the space of X is also S. This is illustrated in Example 1.1-10.

Example 1.1-10. Let the random experiment be the cast of a die. The
sample space associated with this experiment is S = {1, 2, 3, 4, 5, 6}. Foreach
s € 8, let Y(s) = s. The space of the random variable Y is then {1, 2, 3, 4, 5, 6}.

For notational purposes we shall denote the event {s: se S and X(s) = a}
by {X = a}. That is, the event {X = a} is the set of points in the sample space
that are mapped onto the real number a by the function X. Similarly,
{s: seSanda < X(s) < b} willbedenoted by {a < X < b}. Nowif we want to
find the probabilities associated with events described in terms of X, such as
{X = a} and {a < X < b}, we use the probabilitics of those events in the
original space S, if they are known. That is, when we define the probability
of these events, we shall let

P(X = a) = P({s: seSand X(s) = a})
and

Pla < X <b)y= P({s: seSanda< X(s) < b}).

We say that probabilities are induced on the points of the space of X by the
probabilities assigned to outcomes of the sample space S through the function X.

Example 1.1-11. If, in Example 1.1-10, we associate a probability of 1/6
with each outcome, then, for example, P(Y = 5) = 1/6, P2 < Y < 5) = 4/6,
and P(Y < 2) = 2/6 seem to be reasonable assignments.

The student will no doubt recognize two major difficulties here:

(1) In many practical situations the probabilities assigned to the events
A of the sample space S are unknown.

(2) Since there are many ways of defining a function X on §, which function
do we want to use?

As a matter of fact, the solutions to these problems in particular cases are major
concerns in applied statistics. In considering (2), statisticians try to determine
what “measurement” (or measurements) should be taken on an outcome; that
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is, how best do we “mathematize” the outcome (which, for the anthropologist,
might be a skull)? These measurement problems are most difficult and can only
be answered by getting involved in a practical project. For (1), we need, through
repeated observations (called sampling), to estimate these probabilities or
“percentages.” For example, what percentage of newborn girls in the University
of Towa Hospital weigh less than 7 pounds. Here a newborn baby girl is the
outcome, and we have measured her one way (by weight); but obviously there
are many other ways of measuring her. If we let X be the weight in pounds, we
are interested in the probability P(X < 7) and we can only estimate this by
repeated observations. One obvious way of estimating this is by use of the
relative frequency of {X < 7} after a number of observations. If additional
assumptions can be made, we will study, in this text, other ways of estimating
this probability. It is this latter aspect with which mathematical statistics is
concerned. That is, if we assume certain models, we find that the theory of
statistics can explain how best to draw conclusions or make predictions. Now
the construction of such a model does require some knowledge of probability,
and most theories of probabilities are based on the concept of sets (or events).
Accordingly, a basic review of the algebra of sets is given in Section 1.2.

One final remark should be made. In many instances, it is clear exactly
what function X the experimenter wants to define on the sample space. For
example, the caster in a dice game is concerned about the sum of the spots, say X,
that are up on the pair of dice. Hence, we go directly to the space of X and some-
times even call this the sample space S, if there is no confusion. After all, in the dice
game, the caster is directly concerned only with the probabilities associated
with X. Hence, the reader can, in many instances, think of the space of X as
being the sample space.

Exercises

1.1-1. In each of the following random experiments describe the sample space S. Use
your intuition or any experience you may have had to assign a value to the probability p
of each of the events A.
(a) The toss of an unbiased coin where the event A is heads.
(b) The cast of an honest die where the event A occurs if we observe a three, four,
five, or six.
(¢) The draw of a card from an ordinary deck of playing cards where the event A
is a club.
(@) The choice of a point from a square with opposite vertices (0, 0) and (1, 1) where the
event A occurs if the sum of the coordinates of the point is less than 3/4.

1.1-2. Describe the sample space for each of the following experiments.
(a) Toss a coin seven times and observe the number of heads.
(b) Toss a coin five times and observe the sequence of heads and tails.
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(¢) Observe the number of tosses of a coin until the first head appears.
(d) Draw five cards at random from a standard deck of cards and record each card in
that five-card hand (order of drawing is not important).

1.1-3. If a disk two inches in diameter is thrown at random on a tiled floor, where each
tile is a square with sides four inches in length, assign a probability to the event that the disk
will land entirely on one tile.

1.1-4. Divide a line segment into two parts by selecting a point at random. Assign a
probability to the event that the larger segment is at least two times longer than the shorter
segment,

1.1-5. Let the interval [ —r, r] be the base of a semicircle. If a point is selected at random
from this interval, assign a probability to the event that the length of the perpendicular
segment from this point to the semicircle is less than r/2.

1.1-6. Consider the sequence of heads (H) and tails (T) if an unbiased coin is flipped four
times.
(a) List the 16 points in the sample space.
If X equals the number of observed heads, list which of these sample points correspond to
by {X =3}, © {0<X<1}

1.1-7. Let X equal the number of observed heads in two flips of an unbiased coin. If each
* point.in the original sample space S = {HH, HT, TH, TT} has probability 1/4, assign
values to

(@ PX =0), (b) PX =2),

©) PX <)

1.1-8. Let the random variable W equal a number selected at random from the closed

interval from zero to one, that is [0, 1]. Describe the sample space S of W. Assign values to
(a PO<W <13, b) P13 < W<, »
© P(W=1/3), d P12<W<)I).

1.1-9. Each of the numbers 1, 2, 3,4, and 5 is written on a disk and placed in a hat. Two
disks are drawn without replacement from the hat.
(a) List the 10 possible outcomes for this experiment.
(b) If the random variable Y is defined to be the sum of the two drawn numbers and
each of the 10 outcomes has probability 1/10, assign values to P(Y = 3), P(Y = 5),
and P(6 < Y < 8).

1.2 Algebra of Sets

Before defining a probability set function in Section 1.3, we give some basic
rules and definitions associated with set algebra. In addition, some terminology
used in probability will be explained.

The totality of objects under consideration is called the universal set and is
denoted S. Each object in S is called an element of S. If a set A is a collection
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of elements that are also in S, then 4 is said to be a subset of S. In applications
in probability, S will usually denote the sample space. An event A will be a
collection of possible outcomes of the experiment and will be a subset of S.
We say that event A has occurred if the outcome of the experiment is an element
of A. The set or event A may be described by listing all of its elements or by
defining the properties that its elements must satisfy.

Example 1.2-1. Let S = {1,2, 3,4, 5, 6}. If A is the subset of S consisting
of the even integers, we may write A = {2,4,6} or A = {x: Xx is even}.
In order to emphasize that x is also in S we could write

A= {x: xisin Sand x is even}.

When a is an element.in 4, we write a € A. When a is not an element in A4,
we write a ¢ A. So, in Example 1.2-1, we have 2 € A and 3 ¢ A. If every element
of a set A is also an element in a set B, then 4 is a subset of B. We write A < B.In
probability, if event B occurs whenever event 4 occurs, then A = B. The two
sets A and B are equal, A = B, if A =B and B < A. Note that it is always true
that A =« A and A = S, where S is the universal set. We denote the subset that
contains no elements by (. This set is called the null or empty set. For all sets
A, < A ,

The set of elements in either A or B or possibly in both 4 and B is called
the union of A and B and is denoted A U B. The set of elements in both 4 and B
is called the intersection of A and B and is denoted 4 n B. The complement of a
set A is the set of elements in the universal set S that are not in the set 4 and is
denoted A'. In probability, if 4 and B are two events, the event that at least one
of the two events has occurred is denoted by A U B, or the event that both events
have occurred is denoted by A n B. The event that 4 has not occurred is denoted
by A’, and the event that 4 has not occurred but B has occurred is denoted by
A nB.If A~ B = ¢, we say that A and B are mutually exclusive.

The operations of union and intersection may be extended to more than two
sets. Let A;, A,, ..., A, be a finite collection of sets. Then the union

AyVA,u-rud, = A4
k=1
is the set of all elements that belong to at least one 4,, k= 1,2,...,n. The
intersection
AlﬁAzﬁ---hA,,= ﬂAk
k=1
is the set of all elements that belong to every A,, k = 1,2,...,n. Similarly,

let A,, 4,,..., A,,...beadenumerable collection of sets. Then x belongs to the
union

Al UA2UA3U"'= UA"
k=1
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if x belongs to at least one 4, k = 1,2, 3,....Also x belongs to the intersection
oo
AIF\AZ('\A3(\--- = mAk
k=1

if x belongs to every 4,, k= 1,2,3,....

Example 1.2-2. Let S be the set of positive real numbers less than or
equal to 6. Thus S={x: 0<x<6} Let A={x: 1<x<3}
B={x: 2<x<6},C={x: 3<x<5},and D={x: 0<x<2}
Then

AUuB=1{x: 1 <x<6}

BuD=4§,
BnD =,
AnB={x: 2<x<3}
BNnC=2C,

A={x: 0O<x<lor3<x<6}
B ={x: 0<x<2}=D.
Also
AuCuD={x: 0<x<5}

and
AnBnC={x: x=3}L
Example 1.2-3. Let

Ak={x: ——m—s)cslo}, k=1,23,....
Then

o0
(JAp={x: 0<x<10};

note that the number zero is not in the union since it is not in one of the sets
Ay, Ay, As, . ... Of course,

N A= {x: 5<x<10} =4,
k=1

since 4, © A, k=1,2,3,....

A convenient way to illustrate operations on sets is with a Venn diagram.
In Figure 1.2-1 the universal set S is represented by the rectangle and its interior
and the subsets of S by the points enclosed by the circles. The sets under con-
sideration are the shaded regions.
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AUB

ANB AUVBUC

FIGURE 1.2-1

Set operations satisfy several properties. For example, if 4, B, and C are
subsets of S, we have the following:

Commutative laws:
AuB=BuA
AnB=Bn A
Associative laws:
(AvuBuC=AuUBuU()
ANnBINnC=An(BnC)

Distributive laws:
An(BulC)=(AnBuAn(C)
AuBNnC)=(AuB)n(Au ).

De Morgan’s laws:
(AuBYy =A"NnB
(AN By = A’ U B.



