for Computers
and Microprocessors

Codes for Computers
and Microprocessors

P.E. Gosling
Q.L.M. Laarhovei

©P. E. Gosling and Q. L. M. Laarhoven 1980

All rights reserved. No part of this publication may be reproduced or
transmitted, in any form or by any means, without permission.

First published 1980 by

THE MACMILLAN PRESS LTD

London and Basingstoke

Associated companies in Delhi Dublin
Hong Kong Johannesburg Lagos Melbourne
New York Singapore and Tokyo

Typeset in 10/12 Press Roman by
Styleset Limited, Salisbury, Wilts.
and printed in Hong Kong

British Library Cataloguing in Publication Data

Gosling, PE
Codes for computers and microprocessors.
1. Electronic digital computers
2. Coding theory
I. Title II. Laarhoven, QLM
001.6'424 QA76.5

ISBN 0-333-25825-8

This book is sold subject to the standard conditions of the
Net Book Agreement.

The paperback edition of this book is sold subject to the condition that it
shall not, by way of trade or otherwise, be lent, resold, hired out, or

otherwise circulated without the publisher’s prior consent in any form of
binding or cover other than that in which it is published and without a similar
condition including this condition being imposed on the subsequent purchaser.

Preface

This book is about communication — communication between man and machines,
and between machines themselves. It is intended to be as much a reference book as
a textbook to serve as part of a course of study. On the one hand it will be useful in
a practical sense for many people working, in particular, with minicomputers and
now microprocessors. In both of these an understanding of what is going on inside
is an aid to using the machines efficiently. On the other hand it will also be of value
to students of computer science who need to be familiar with the techniques of
data transmission. We hope that this book will add a practical dimension to the
pure theory that is to be found in many textbooks dealing with computer science
at all levels.

P. E. GOSLING
Q. L. M. LAARHOVEN

Introduction

The ability to exchange information between men and computers, and between
computers themselves, relies on symbols which have a definite meaning agreed and
arranged between both parties beforehand. Such symbols must have the same
meaning for both partners in order to avoid any confusion or misinterpretation. The
agreement on the meaning of the symbols used is usually built into the computer
and learned by man. The series of agreements which represents the elements of a
collection for communication is referred to as a code, and man has used symbols
and codes for many years. For example, traffic lights and traffic signs together form
a code which consist of a series of agreements about traffic behaviour. Another
example is the Morse code which is a well known time-based code representing
numbers and the letters of the alphabet.

The choice of a code for a given application depends on several factors. One of
these is the suitability of the code for arithmetic calculation, another is the ability
to detect mistakes and correct them. Modern computers only recognise the two
symbols 1 and 0 because these are easily represented by electronic equipment, Our
task in this book is to show some of the ways in which a variety of information can
be contained in patterns which consist solely of 1s and Os.

DATA REPRESENTATION

Codes can take any form as required by the user but in general they can be thought
of as a mapping from a set of symbols A to a set of symbols B by a transformation
according to some rule.

Transformation

A: Symbols recognisable by man
B: Symbols recognised by a computer

Information intelligible to man will consist of a set of symbols of which the
letters of the alphabet and the digits O to 9 form a large part. The computer,
however, operates through a series of electronic switches designed to allow current

x Introduction

to flow or not flow. Such a switch provides two possible options
Current/no current
which translates to
yes/no
on/off
1/0

such a unit of information is called a bit (binary information digiz).

There are a number of standard codes used to convey information through
binary coding. One of these is the American Standard Code for Information
Interchange (ASCII); another is the Extended Binary Coded Decimal Interchange
Code (EBCDIC) and these will be discussed in detail later.

The result of coding a piece of information is called the object code and it is the
purpose of all coding to produce an object code in binary digits for any combination
of the 26 alphabetic characters, the digits O to 9, certain punctuation marks,
graphical characters and arithmetic operators (+, —;=. ...) together with what are
termed control characters. A control character is one which represents an instruction
to a certain piece of computer hardware, for example

Transmit/receive
Device control

Code extension control
Information separators

A code in binary form can represent any number of symbols provided that for
every possible symbol there exists a unique binary code.

If only one binary digit can'be used in an object code then there are only 2!
combinations possible (0 or 1). If more than one binary digit is allowed then for n
bits there are 2" combinations possible. For example, if n = 3 there are 23=8
combinations possible

000, 001,010,011, 100, 101, 110, 111

so that from 3 bits there are 8 possible object code patterns.

The more characters we need to represent, the greater the number of bits we need
to use in order to distinguish between letters, figures, punctuation marks and special
characters. The bits must be put together in such a way that there is no doubt as to
their meaning. A sequence of bits are put together to form all or part of a computer
word. If a word consists of eight bits

b0 b1 b2| b3 b4 b5 | b6 | b7

b7, the rightmost bit is called the least significant bit (LSB) and the leftmost bit, b0,
is called the most significant bit (MSB).

Contents

Preface
Introduction

1 Weighted Codes

1.1 Properties .

1.2 Some conversion examples

1.3 Conversion of base g to decimal

1.4 Arithmetic rules for binary numbers
1.5 Word length

1.6 Conversion of decimal to binary

1.7 Other notation forms for binary codes
1.8 Octal number system

1.9 Fractions

1.10 Negative numbers

1.11 Binary addition

1.12 Subtraction using complements

2 Organisation of the Central Processing Unit

2.1 Multiplication
2.2 Division
2.3 Logical operations

3 Floating Point

3.1 Use of numbers
3.2 Integer storage

4 Practical Coding Procedures

4.1 8-4-2-1 code

4.2 Excess-3 code

4.3 Gray code

4.4 Unweighted codes

vii

iX

—

NN b B W W

—_—
wn = O

16

18

19
21

23

25
28

30

30
31
32
33

vi Contents

4.5 ISO code

4.6 ASCII code
4.7 EBCDIC code
4.8 Telex code
4.9 Punched tape
4.10 Baudot code
4.11 Punched cards

5 Data Transmission

5.1 Transmission systems

5.2 Parity checking

5.3 Magnetic tape codes
Summary of EBCDIC and ASCII Codes
USASCII Character Set

Hexadecimal—Decimal Integer Conversion Table

35
36
38
39
40
40
42

47
47
49
49
51
56

58

1 Weighted Codes

In general a code needs to be selected systematically. Such a system could depend
on

(1) time span plus frequency (as in the Morse code)
(2) Certain groups (figures together, small letters, capital letters).

A system is called a weighted code if there is an arithmetic connection between the
code and decimal notation.

The decimal notation is itself an example of a weighted code. For example, the
number 252 implies that the first 2 has a different meaning from the last 2. This is
because the number is representing

2 one hundreds
5 tens
2 units
that is
200+ 50+2
=2x10% +5x 10" +2 x 10°

The weight of a particular digit is represented by its position relative to the other
digits. This can be represented in the form of a progression as shown above.
The decimal number 641.8 can be represented by the progression

0x103 +6x102+4x10" +1x10°+8x10" ! +0x 1072

Every real number expressed to a finite number of significant digits can therefore be
represented by a series of the form

1

N=a, xg" +an_ xg" '+ +a, xg"' +aoxg® +a_; xg~ '+

—m
ta_, xg

i=n
- i
- 2: aixg

i=—m

in which g represents the base, basis or radix and a the character or symbol.

2 Codes for Computers and Microprocessors

To represent a number there are as many symbols as the size of the base. For
g = 10 (decimal system) we have the ten symbols 0 to 9 inclusive. Between aq x g°
anda_, xg~ ' Continental practice is to use the comma, otherwise a full stop
(point) is used. If m = 0 the number is an integer. If n = 0 the number is a fraction.
This series is, in fact, a special form of a weighted code.

1.1 PROPERTIES
(1) If for every a; in a number @; =g — 1 (that is, the maximum value of ;) then

i=n—1

Z aixgi=gn__]
i=0

(for example, if n = 3, then 999 = 1000 — 1)
i=n—1
a;ixg =g" — g ¥ approaches g"
i=—k
For example
999.99 = 1000 — 0.01
and
999.99 - - - > 1000
(2) Because
2xap<2g-1)
then
4 xg° +ax xg" <2(g — 1) x g
so that

ay xgk+ak xgk+1 xgk<2(g— l)xgk +g"<2xg"'Jrl

that is to say that when adding up two numbers, one does not have to carry more
than one unit whatever the base.

3)

i=n—1 i=n—1 i=n

&X Z aixgi= Z afxgi+'+zai_lxg"+0xg°
i=0 i=0

i=1

that is to say that multiplication of an integer by the base means that the number
moves one place to the left and a zero is placed in the units position.

Weighted Codes 3
1.2 SOME CONVERSION EXAMPLES

(1) Binary system: base 2:symbols: digits 0 and |
0=0x2°=0
1=1x2%=1
10=1x2"+0x2%=2
11=1x2"+1x2°=3
100=1x22+0x2"+0x2%=4

101 =1x2%2+0x2" +1x2%°=5

(2) Hexadecimal code: base 16;symbols: digits 0 to 9 plus letters A to F
0=0x16°=0
1=1x16% =1
2=2x16%=2
A=Ax16°(=10x16%) =10
B=Bx16°(=11x16%) =11
10=1x16'+0x16° =16
A4=Ax16"+4x16°=(10x16" +4x16°) = 164

(3) Octal code: base 8; symbols: digits 0 to 7
0=0x8%=0
1=1x8°=1
10=1x8"+0x8°=8
11=1x8"+1x8%=9
100=1x8>+0x8"' +0x8°=64

If several number systems are intermixed, it is common practice to put the base as a
subscript after the number, thus 101, =5,,.

1.3 CONVERSION OF BASE g TO DECIMAL

To convert a binary number to its decimal equivalent we make use of the weighted
code as follows.

4 Codes for Computers and Microprocessors
24| 23] 2% | 2! [2 weights

1 ‘ 0 ’ 1 1,0 (1 binary number

‘ bit value weight

1 1—1
-0 2—0
— 1 4—4
0 8§—0
- -1 16— 16

decimal number 21

In general we find the value of a binary number by multiplying every digit by its
weight and summing the products. This will, of course, apply to any weighted code.
The number with the greatest weight is placed on the far left (in the most significant
position) and the number with the least weight is placed on the far right (in the least
significant position). Normally, leading zeros are not written.

1.4 ARITHMETIC RULES FOR BINARY NUMBERS

Addition Subtraction

0+0=0 0-0=0

0+1=1 0 — 1 =1 with borrow 1
1+0=1 1-0=1

1 +1 =0 plus carry 1 1-1=0
Multiplication Division

0x0=0 0/1=0

O0x1=0 1/1=1

I1x0=0 0/0="2

Ix1=1 1/0="7?

1.5 WORD LENGTH

In a computer most components (memory, arithmetic and logic units, registers,
data channels) can only contain a certain number of bits so that each can contain
a fixed-length computer word. A computer word need not be used solely for the
representation of a number; it can contain operation codes or other information

Weighted Codes 5

such as sign bits. The division of a word into various parts is reflected in its word
format.

The length of word used can vary considerably. Commonly used are word lengths
of 8, 12,16, 18,24, 32,48 and 64 bits. Most microcomputers have a word which is
made up of 8 bits, commonly referred to as a byte, while the majority of mini-
computers use a 16-bit word, that is, two bytes. Incidentally, in microcomputers
half a byte is often referred to as a nibble! Large mainframe computers in general
use words with 32 or 64 bits. From this it is obvious that the word length and the
format of the word determine to a large extent the architecture of a computer. In
general, most designs use a word of fixed length with a double-length word to allow
for an extended range of instruction words and greater accuracy of arithmetic
calculations. The use of a word of variable length would complicate the way a
computer works to a considerable extent.

1.6 CONVERSION OF DECIMAL TO BINARY

There are two ways in which a decimal number can be converted into its binary
equivalent.

(1) Subtraction of Powers

Subtract the highest power of 2 possible from the decimal number which leaves a
positive remainder and place a 1 in the appropriate place in the weight table. Repeat
this procedure with the remainder, the remainder’s remainder, and so on, until the
decimal number has been reduced to zero. If after a subtraction the next power of
2 cannot be subtracted a 0 must be written in the weight table.

Example The binary equivalent of 42,
42 1010 2 2 0 25 2% 23 22 2' 2°

-32 —-16 -8 —4 -2 -1 32 16 8 4 2 1

10 — 2 - 0 - 1 0 1 0 1 0=101010,

(2) Division Method

Divide the decimal number by 2. If there is a remainder, put 1 in the LSB position.
When there is no remainder, put 0 in front of the previous digit. Divide the quotient
from the previous division by 2 and repeat the process.

6 Codes for Computers and Microprocessors

Example The binary equivalent of 47,
Quotient Remainder

20147 23] sy

2023 11 I

20115]y
215 2 1
212 1 0
201 0 17

101111

1.7 OTHER NOTATION FORMS FOR BINARY CODES

The hexadecimal system is used to present large binary numbers in a more
compact form; this limits the likelihood of mistakes in transmission. The
hexadecimal system has 16 digit symbols and the base number is 16. The symbols
are the digits O to 9 and the letters A to F with weights of O to 15 inclusive.

The hexadecimal value of a binary number can be determined by dividing the
bits up into groups of four starting with the least significant bit. Each group of
4 bits represents 16 possible numbers. For example, a number can be represented
as A673D and will have a decimal equivalent of

Ax16Y+6x163+7x162+3x16' +D x 16°
=10x16*+6x16%+7x16%2+3x 16" +13 x 16°

On the basis of the conversion triangle below, an example from every conversion
can be worked out.

Decimal
A

Binary *— Hexadecimal

Binary to Hexadecimal

00111011 =0011 1011
T
|
L 3
Hence

00111011, =3B,

Weighted Codes 7

Hexadecimal to Binary

1D4,¢ =0001 1101 0100

1 D 4
=000111010100,
Binary Hexadecimal Decimal

Weights 8421

0000= 0 0
0001= 1 1
0010= 2 2
0011= 3 3
0100= 4 4
0101= 5 5
0110= 6 6
or1it1= 7 7
1000= 8 8
1001 = 9 9
1010= A 10
1011= B 11
1100= C 12
1101= D 13
1110= E 14

F 15

1111=

1.8 OCTAL NUMBER SYSTEM

The octal number system, base 8, symbols O to 7, is often used in minicomputers so
that words containing 12 bits can be made more manageable by dividing the word
into four groups of 3 bits each. If a word contains 16 bits it is usually divided up
into five groups of 3 bits and one of 1 bit only.

Example By splitting the binary number up into four groups of three bits and
starting with the least significant bit we get 11010111101 divided into 011 010 111
101. These binary groups can be replaced by their octal equivalents, that is

0]]2=33 0]02:28 ”12:78 1012=58

The octal equivalent of the number is therefore 3275. This method is easily used to
convert an octal number to binary

5307 =101 011000 111

8 Codes for Computers and Microprocessors

Octal—Decimal Conversion

Octal numbers can be converted to decimal by using the weights of the digits as
before. The weights are, of course, powers of 8.

Example
21675 =2x 8% +1x8% +6x8! +7 x8°
=1024 + 64 + 48 +7
=1143,,

Decimal—Octal Conversion

As with binary—decimal conversion there are two important methods for this
operation.

(1) Subtraction of Powers

Subtract from the decimal number the highest possible value of g x 8" such that a
positive remainder is left, where a is a number between 0 and 7 and » starts at one
less than the number of decimal digits before the decimal point. Write down the
value of a. Continue with decreasing powers of 8 until the decimal number is
reduced to zero. Whenever the subtraction of powers of 8 is not possible write down
a zero.

Example The octal equivalent of 2591 10

2591
2560 =5 x 8% =5x512

31
0=0x82=0x64

31
24 =3x8'=3x8
7
T=7x8%=7x1

0

Hence
2591 g = 50371 0

The following conversion table is very useful in this context.

Weighted Codes 9

Position of

,
octal number 1 - ¥ % 3 0 7
1 8° 0 1 2 3 4 5 6 7
2 8! 0 8 16 24 32 40 48 56
3 8° 0 64 128 192 256 320 384 448
4 83 0 512 1024 1536 2048 2560 3072 3584
ete.,

(2) Conversion by Division

Divide the decimal number by 8 and place the remainder as the least significant
digit of the octal equivalent. Repeat this with increasing weights until the
remainder is zero.

Example 1376, in octal

Quotient Remainder
811376 172 0
8 172 21 4
8 |21 2 5
8 2 0 2

Hence
1376,9 = 25405

Both of these methods can be adapted to the hexadecimal system.

1.9 FRACTIONS

In all number systems fractions are represented in the same way as in the decimal
system and we will use the point (.) rather than the Continental comma.

Conversion from Decimal Fractions into Binary and Octal Fractions

Subtraction of Powers

In this case the highest possible negative power is multiplied by one of the digits in
the number system and is subtracted from the decimal number, and so on. The
multiplying digit is then written down in order to construct the new number.

