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PROGRESS IN THE THEORY OF FINITE ELEMENT APPROXIMATIONS

OF PROBLEMS IN NONLINEAR ELASTICITY

J.T. Oden(I) and C.T. Reddy(II)

Summary
We summarize the state of the art in existence theory in nonlinear

elastostatics and cite new results which have direct bearing on the con-
struction of an approximation theory.

1. General Discussion

In this paper, we give a brief report on the current status of the
mathematical theory of finite element approximations of the nonlinear
equations of finite elastostatics. We also outline some of our recent
results in this area.

Some significant barriers have stood in the way of the development of
such a theory. Perhaps the most significant barrier has been the absence
of an existence theory for elasticity problems, since the availability of
such a theory is usually an intrinsic part of a viable theory of approxi-
mation. While the origins of the theory of elasticity date back over 300
years, some progress toward the development of an existence theory for
one-, two-, and three-dimensional problems has been made only recently--
a general theory still seems to be well outside the existing theory of
nonlinear partial differential equations. The picture is further compli-
cated by lack of agreement on reasonable constraints on the forms of the
constitutive equations so as to produce problems with physically reason-
able solutions. Truesdell's "main unsolved problem in the theory of
finite elastic strain" [1] 1is, thus, still unsolved. A comprehensive
survey of various proposals for "solutions' of the "main problem" can be
found in Wang and Truesdell [2].

One hypothesis that has received much attention is the strong ellip-
ticity or Legendre-Hadamard condition which asserts that

2 P
—20 3, 2 0 ¥ LuER )

,0 LB

are components of the

: . i
where o 1is the strain energy function and w &
>

displacement gradient tensor.

I. The Texas Institute for Computational Mechanics,
The University of Texas at Austin.

II. The Texas Institute for Computational Mechanics,
The University of Texas at Austin.



Antman (e.g., [3-5]) has used this assumption to develop existence
theories for elastic rods. However, the one-dimensional version of (1)
is equivalent to the condition that o be a convex function of deforma-
tion measures. Ordinarily, this would be physically unacceptable for
arbitrary deformations because it would lead to strongly monotone opera-
tors, uniqueness of solutions, and, therefore, be incompatible with the
theory of elastic stability. It is apeculiarity of the one dimensional
theories of rods, however, that the governing equations of equilibrium
contain lower-order terms. For instance, various kinematical conditions
(e.g., the Kirchhoff hypotheses) lead to equations which are monotone in
the highest derivatives but which always contain terms involving deriva-
tives of lower order. These lower order terms (not necessarily present in
two- or three-dimensional theories) make nonunique solutions possible.
Hence, it is doubtful that techniques which have proved to be successful
for one-dimensional problems can be extended to problems of higher dimen-
sion.

0f course, there are two- and three-dimensional problems in elastici-
ty for which the operators are monotone on a restricted class of deforma-
tions. If "strong stability" is assumed, one can easily construct an
existence theory, and this tact has been explored by Beju [6] and Oden
[7]. In the latter paper, this rather severe restriction was also intro-
duced to make tractable the analysis of finite element approximations, and
error estimates were obaained for problems of this type. Unfortunately,
such studies are of limited interest in elasticity theory as they, again,
pertain to problems exhibiting unique solutions for each choice of data
(excluding possibly rigid motions). The most interesting features of
nonlinear elastostatics concern nonuniqueness of solutions, bifurcations,
and other aspects of stability theory. A satisfactory theory should in-
clude these features.

A fairly complete theory of finite element approximations of two
classes of one-dimensional nonlinear elasticity problems has been given by
Oden and Reddy [8] and Oden and Nicolau [9,10]. In [8], monotone
operator theory is used to study cases in which the energy is dominated
by polynomial terms in the principal invariants of the deformation tensor.
Error estimates in the W+ ’P —Sobolev and LP -norms are given. In [9]
and [10], a nonlinear system of equations corresponding to a vector-
valued displacement defined on a one-dimensional domain is analyzed. The
operators are not monotone, solutions are nonunique, and strong elliptici-
ty is assumed. The necessary lower-order terms are introduced through a
(somewhat contrived) gravitational potential energy. However, a complete
existence theory is derived together with error estimates and convergence
criteria.

A study of convergence behavior of one-dimensional nonlinear elastic-
ity problems has also been contributed by Wellford [11]. His numerical
experiments indicate that optimal rates of convergence can be obtained
when the solutions are sufficiently smooth (a fact also confirmed in [8])
and that optimal rates on solution paths after bifurcations are also
obtainable (also confirmed in [9,10]). Wellford's experiments also point
to a signficiant decrease in convergence rates near bifurcation points,
and this phenomena has not been explained theoretically.

When the nonlinear boundary-value problem under investigation falls
within the framework of Sobolev spaces, the usual error analysis



techniques based on monotone operator theory (e.g., Browder [12]) or the

elliptic theory of Vi$ik [13] or Lions [14], leads to estimates of
the form

_ O(hk/(p—l))

llu = u |l (2)
h wl’P(Q)

where u 1is the solution, u its finite element approximation,
l|'le’p(Q) the usual SoboleV norm, 2 < p < ®» , h the mesh parameter,

and k the degree of the piecewise polynomial used in constructing ug .
Results such as this have been obtained by Glowinski and Marroco [15]
for the operator —V(IVuIP_Z Vu) , by Babu¥ka [16] for the second-order
strongly elliptic, quasi-linear operators of Visik [13], and, for one-
dimensional nonlinear elasticity problems by Wellford [11,17] and Oden
and Reddy [8]. As noted earlier, these results are in direct conflict
with numerical experiments whenever the solution is smooth. Thus, for
general nonlinear elliptic problems, the problem of obtaining optimal
error estimates is still open.

A measure of progress has been obtained in this area for a restricted
class of problems. In [8} Oden and Reddy obtained a slight improvement
in a Wl’p -bound of O(h1 é+1/P) for k =1 , which is obviously still
not optimal. More recently, Reddy and Oden [18] obtained optimal error
estimates for piecewise linear approximations of a class of one-dimension-
al problems involving monotone operators. Their analysis made heavy
appeal to the assumed smoothness of the solution and of the monotonicity
of the operators involved. Unfortunately, their analysis is not applic-
able to most elasticity problems since monotonicity generally does not
exist. Very recently, Fix [19] has reportedly resolved the question

of optimal error estimates for Dirichlet's problem for the operator
-V(|Vu|P~2 vu)

In the work of Antman (e.g., [3-5]), the role of the local inverti-
bility condition in the construction of physically reasonable boundary-
value problems in continuum mechanics has been emphasized. If E(%) is
the deformation gradient at particle X , then the invertibility condition
demands that the motion be locally invertible and orientation preserving
at X , and this is guaranteed if and only if

det F(X) > 0 (3)

This condition imposes a constraint on the classes of admissible solutions
of problems in nonlinear elasticity and leads to serious mathematical
difficulties.

In addition, if the constitutive equation for the material (for in-
stance the form of the strain energy 0) is to exhibit physically reason-
able response to large compressive deformations, Antman points out that ©
should exhibit the singular behavior,

g > as det F - 0 (4)

This condition, of course, constrains the domain of the operators of elas-
tostatics. Moreover, the set of admissible motions K where



K = {x: F=Vx;det F>0 (5)

is not convex, an unfortunate fact which lifts the elastostatics problem,
subject to the constraint (3), outside the realm of modern developments
in the theory of variational inequalities.

In very recent times, some progress has been made toward the develop-
ment of a general existence theory for finite elasticity. Two entirely
different approaches have been proposed, each having some attractive
features and each having some undesirable features which include serious
questions yet to be satisfactorily resolved. An elaborate existence
theory for hyperelastic materials has recently been proposed by Ball [20].
Ball's theory is based on the idea of polyconvex functions, and he ad-
dresses the question of existence by showing that motions exist which make
the total potential energy of a hyperelastic body assume a stationary
value. Ball's theory extends that of Morrey [21] on quasiconvex func-
tions. While Ball's theory is restricted to hyperelastic materials, it
does accomodate one-, two-, and three-dimensional problems, a wide variety
of boundary conditions, unilateral constraints such as det Vx > 0 (local
invertibility) or det Vx = 1 (incompressibility) and singula; behavior
of the type imposed by the natural condition, o0 - © as det F »~ 0 , F
being the deformation gradient tensor. -

Unfortunately, Ball is unable to show that any vector which renders
the total energy stationary is even a weak solution of the equilibrium
equations of elasticity. This critical step is missing in his theory
because of difficulties in determining the differentiability of certain
functionals on convex (or quasi convex) sets. In addition, the (constitu-
tive) assumption of quasiconvexity of a twice differentiable strain energy
function © in turn implies that o satisfies the Legendre-Hadamard con-
dition (1). In other words, Ball effectively assumes strong ellipticity
as a constitutive requirement. Assumptions of this type for two- and
three- dimensional theories have come under serious criticism lately.
Indeed, Knowles and Sternberg [22,23] have recently shown that the equa-—
tions of nonlinear elastostatics for hyperelastic materials may suffer a
loss of strong ellipticity for solutions which exhibit "sufficiently
severe local deformations." Also Ericksen [24] has shown that the vio-
lation of the strong ellipticity condition at a point may lead to physi-
cally reasonable instabilities.

An alternate existence theory for a class of nonlinear boundary-value
problems has recently been developed by Oden [25]. In [25] a general
existence theorem for a class of nonlinear operators on reflexive Banach
spaces is developed which generalizes the theory of "operators of the type
of the calculus of variations' developed by Lions [14]. These operators
fall into the category of pseudomonotone operators introduced by Brezis
[26], but they do not lead to operators which are necessarily monotone in
the highest derivatives. Oden shows that a useful element in a theory of
this type is the availability of a nonlinear Garding-type inequality.
While a necessary and sufficient condition for the existence of a Garding-
inequality for certain linear second-order elliptic operators with well-
behaved coefficients defined on sufficiently smooth functions is that the
operator be strongly elliptic (see, e.g., Agmon [27]), this is apparently
not the case in nonlinear problems. The theory presented in [25],



therefore, does not rely on strong ellipticity - or, at the very least,
the role of strong ellipticity in implementation of this theory is, at
present, very obscure.

In applications of the theory in [25] to specific problems in non-
linear elastostatics, difficulties in developing general Ggrding-—type
inequalities have not been completely overcome. The accomodation of gen-
eral boundary conditions and unilateral constraints also impose problems
which are yet to be resolved.

2. Theoretical Developments

The following existence theorem generalizes the theory of monotone
operators

Theorem 1. Let U and U be real reflexive Banach spaces, with U
compactly imbedded in V , and let A be bounded, hemicontinuous, coer-
cive operator from U into the topological dual U' of U . Moreover,
for every pair of vectors u , v in U such that

u,v € B]J(O) = {weu:HwHu < oy} (6)

4 5 + + + N
let there exist a continuous nonnegative function H: R xR >R , with
the property

4 +

lim 6 H(x, 0y) = 0 ¥ x ER (7)
6-+0
such that
A - AW, u=-p > -H, |l - vl (8)
where <&, denotes duality pairing from U' x U into R . Then for

every f € U, there exists at least one u€ U such that
A(u) = f 9
For a proof of this and related theorems, see Oden [25].

In applications to elasticity problems, (8) may manifest itself in
the form of a nonlinear G;rding inequality. For example, the Dirichlet
problem in elastostatics of hyperelastic materials involves seeking a
displacement field v such that

90 (u) i —
J n vi,a - po £ vi) dv = 0 ¥ vE U (10)
Q Bu,a

where § 1is an open subset off particles) in .Rn ,n=1,2,3, and U(R)
is the space of admissible displacements, pofl the components of body
force, etc. Then

30 (u)

vi,u dv (11)

<GAw, v = J

i
Q Bu,u



For example, suppose O 1is a polynomial on the principal invariants
of the deformation tensor, which, when expressed in terms of Vw , is a
polynomial of degree p > 2 in the components Wi - Then we may usu-—
ally encounter the Sobolev spaces

(w(l)"’(n))“ = U@ 5 (P@)" = @ (12)
To apply Theorem 1, we seek a G;rding—type inequality of the form
p P’
@ - a@, w-vd> 2 clly-wll} - v lle - vll?
l)p
v ou, vEBOCHP® (13)

where C,, Y(M) are positive constants, Y depending continuously on
u, p' = p/(p-1) , and

P P
— = - d
[lu YI‘l,p IQ 1,£=1 lui,a Vi,a‘ v
(14)
he-vll? = [ le-v - @-0lP?w

Clearly, for small enough Y(M) , the right hand side of (13) may be ,

positive, in which case A 1is strictly monotone. As 7Y(U) Hg - yHg p

increases relative to Cg ”g - y] i,p ° a point is reached where ’
9

the right hand side passes from positive to negative. This corresponds
to a point of primary bifurcation, and beyond it A 1is not monotone.

We have also developed inequalities of the type
@ - 2@, gy < el , e -2l | 6@ ®
(15)
= p-2 -1p-2
o ® = oL+ lullP2 + 1)

- 1
Clearly, if A: Ei’p(ﬂ) >+ W Lp (2) is hemicontinuous, coercive
i.e., if

@, vy
lim —W— =

lell > »

+ o (16)

and if A satisfies (13) and (15), then (10) has at least one solution.



3. Error Estimates

In approximating (10), we introduce the usual finite-element spaces
of Sh(Q) of piecewise polynomials of degree k . If h 1is the mesh
parameter, then thesi spaces have the following well-known interpolation
property: if we W sP(Q) , there exists a v::he_ [Sh(Q))n such that

_ H
e = glly, < oy n* vl o
Y = min (k, £-1)
Here
P - (] P
g, = [ 31 ot as
e Q i=1 o<l .
If w 1is the solution of (10), its finite element approximation
W € 8, (@) = [s )N wlP@) satisfies
o
Gla> v = JQ Pof gy dv ¥ v € 5,@ @92
and the orthogonality condition
Gw -am), v) = 0 ¥ v €5 ®© (20)
The error e =W - W, satisfies the inequality
leglly , < lhe = dlly, *llw, = &lly
< o lully, + ey - Sl @1
Let E Zw -w . Then from (13),

P =4l - ~ -1 P
Bl = € o)~ AGY, w - §>+ e v gD P

]

1 ~ - -1 '
B - G, w - w >+ v BT
(by (20))
ey e - Sl e g+ et van (g ]IP
~h''1,p "~  ~h''l,p ~? <h o ~h''o,p

| A

|A

-1 - =
oy gy lly G5 b" Hlully |, GG, &) + ¢ v IlEhll

(22)



Next we observe that as h + 0

Glw, w) = € (@) + 0"

p-2 (23)
60 = oL+ 2lwl}T)
Also, by the Poincare inequality,
el , < o gl c, >0 (24)
Hence, as h + 0 , (22), (23) and (24) combine to give
p-1 <k u
o (25)
-1 p'/p
AR (DR 1N | 4

We reach, at this point, a problem not yet resolved. We must deter-
mine a number O such that

— e 1
c5x° « 2L co1 Y(n) C4xp 2 S >0 (26)

where C5 is a constant greater than 0. If ¢ is known, we have

A

u/o
Ceh

ey, H(w) 27)

where

-1/c 1/o
Ce = (Cs€0) »  Hw) = (Ilyllz,p Go(y)) (28)

The final error estimate is then obtained from (27) and (21):

3 hu/c

l|§hlll’p < c7(hu Hfllg,p H(w)) (29)

This estimated rate of convergence is generally not optimal.

4. Closing Comments

Much additional work remains to be done before meaningful results
can be obtained in the theory of finite elements in nonlinear elasticity.
While some recent advances have been made in establishing a constructive
existence theory for nonlinear elastostatics, several significant open
questions stand in the way of developments of approximation theories.



Inequalities of the type (25) must be "solved" in the sense of (26) and
techniques for obtaining optimal wlsP- error estimates, when possible,
must be developed. The development of techniques for constructing LP—
and Ew estimates seems to be a remote prospect for the near future.
Techniques for the assessment of bifurcation effects and regularity of
solutions are still unknown, as are the effects of quadrature errors,
singularities, boundary errors and the use of approximate data and materi-
al coefficients. All of these subjects provide a formidable challenge

for researchers in computational mechanics and numerical analysis for

many years to come.
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