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It is unworthy of a mathematician to see with
other people’s eyes and to accept as true or
as proven that for which he himself has no proof.

Maestlin (Teacher of Johannes Kepler)



Preface

I have written this book in the belief that an introductory course of
mathematical analysis should include some abstract structural mathematics
and some discussion of numerical methods, as well as the more traditional
classical analysis.

Roughly speaking, analysis is the study of limiting processes. This study
involves, in particular, the convergence of infinite series, the continuity,
differentiability and integrability of functions, and later the theory of
function spaces and functional analysis. The applications of analysis in the
physical and engineering sciences are legion, and the history of the subject
spans over 2000 years, adorned with some of the greatest names in
mathematics; to name but a few; Archimedes, Newton, Leibniz, Euler,
Cauchy, Abel, Weierstrass, Cantor, Dedekind, Riesz, Hilbert and Banach.

Many courses of elementary analysis, which are traditionally given to first
year students in universities, cover only a selection of the simpler aspects of
pre-20th century classical analysis as it was handed down to us by Cauchy and
Weierstrass. It seems to be an unfortunate fact that this purely ‘classical™
approach, often presented in an unnecessarily terse style, leads many
students to regard analysis as calculus with tears. To help to avoid this
situation I have tried to include, in addition to some basic classical analysis,
enough numerical calculations, of a simple type, to enlighten and enliven the
general theory. Of course the existence of mechanical calculating devices and
computers has taken much of the labour out of numerical analysis, but there
is a great danger for beginners in thinking that computers can solve any
numerical problem. It is necessary to show, wherever possible, that the
problem has a solution (this is where classical analysis is useful). Then one
usually needs some procedure which gives a convergent sequence of approxi-
mations to the solution (this is where numerical analysis is required).

With regard to abstract structural mathematics, which is essentially a 20th
century phenomenon, I have attempted to indicate something of the way in
which its unifying spirit is valuable in analysis., The ttme has surely arrived for
the introduction, even into elementary analysis, of such basic notions as
groups, linear spaces, completeness, open sets and homeomorphisms.

xi



Having met these ideas, the student will then be prepared for more advanced
courses on functional analysis and topology with little or nothing to unlearn
in the way of terminology.

The book is primarily addressed to students in universities and polytech-
nics. They will probably be in their first or second year and studying
mathematics or the physical or engineering sciences. Large parts of the book
could, however, be read by more advanced students in schools who have
followed simple courses in calculus.

Every attempt has been made to give detailed proofs of all the results in the
text. Many illustrative examples are incorporated, as well as a large number
of exercises. Hints for the solution of many of the exercises are to be found at
the end of the book. It is hoped that these will help the student who has to
work without much supervision.

In order to make the book more useful 1 have given a fairly detailed
treatment of the elementary functions and such topics as the fixed point
principle, Newton’s approximation for the roots of equations and Stirling’s
theorem on the asymptotic form of n!

A glance at the contents of the book will confirm that it has no claim to be
encyclopaedic. Moreover, no course on a subject as vast as analysis can be an
end in itself. When this work is put aside it is hoped only that the young
analyst will have a firm base from which to explore the many aspects of what
is one of the most fascinating creations of the human mind.

It is with pleasure that I thank Dr. P. L. Walker, a former colleague at the
University of Lancaster. At very short notice he read a substantial part of the
manuscript of the book, and has made a number of valuable comments and
suggestions for improvement.

I. J. Maddox
The Queen’s University of Belfast, 1975
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Logic, Sets, Algebraic
Structures

1. Logic

Logical argument is as important in analysis as it is in any other branch of
mathematics. However, we have neither the space nor the inclination to
presenta detailed formal account of all the logical ideas that we might need to
use in this book. What we shall try to do is to po,uJ\)ut some of the arguments
commonly employed in the proofs of theorems in analysis, and to illustrate
them with simple examples.

In order to give reasonably interesting examples we assume the reader has
some rudimentary knowledge of the sets listed below. These sets pervade the
whole of mathematics, and we shall be discussing them in greater detail in
later chapters. The notations N, Z, Q, R, C will be reserved exclusively for
the following sets:

N={1,2,3,4,...}, the set of all natural numbers,
Z={0,1,-1,2,-2,.. .}, the set of all integers,

Q ={p/q|p € Z and q € N}, the set of all rational numbers,
R, the set of all real numbers,

C, the set of all complex numbers.

With regard to Q, the vertical bar following p/q is read as ‘such that’ and € is
read as ‘belongs to” or ‘is an element of . N is also called the set of all positive
integers. Zahlen is a German word for integers, whence the notation Z.
Rational numbers are also called quotients, whence Q; R and C are
self-explanatory. Most mathematicians now use these symbols, and those
who do not ought to—but let us be charitable. Gauss himself said that
Mathematics is about notions not notations.

One of the basic ideas of logic is that of a proposition. We define a
proposition to be an assertion which is capabtle of being classified as true or
false, but not both.



Here for example are two propositions:
[tisraining (1)
The street is wet. (2)

From two such siinple propositions we may form other propositions by
inserting words such as ‘and’, ‘not’, ‘or’ etc. For example,

Itisraining and the street is wet.

In general we shall denote propositions by p, g, r. Given p, g, the most
important propositions that may be formed from them are:

NEGATION not p, denoted by ~p
CONJUNCTION p and g, denoted by p rq
DISJUNCTION  p or g, denoted by pv g
IMPLICATION  p implies g, denoted by p=>¢q
EQUIVALENCE p if and only if g, denoted by p&g.

By definition, p <>q means that (p = q) A (g = p), i.e. p if and only if ¢ means
that p implies g and g implies p. Two other ways of saying p&q are:
(i) p isequivalent to g

(ii) p is a necessary and sufficient condition for q.

Other common ways of saying ‘p implies g’ are:

(i) If p then g

(iv) p onlyif g

(v) p is a sufficient condition for g

(vi) g is a necessary condition for p.

Example 1. Let p denote (1) above, and g denote (2). Then ~q;p Arq; pq
are respectively: The street is not wet; It is raining and the street is wet; It is
raining if and only if the street is wet.

It is stressed that we are saying nothing as to the truth or falsity of the
propositions in Example 1; we are just illustrating the notations.

The reader will be glad to know (we hope) that mathematical analysis is not
really much concerned with the aqueous state of the thoroughfare. The only
reason for considering propositions like those of Example 1 is that they are
perhaps the simplest which make clear the basic ideas. Moreover they make
no mathematical demands—these come later.

By our definition of a proposition p it must be possible to classify it by
exactly one of the words true or false. Hence we denote its truth value by T or
F.

The following truth table is to be taken as the definition of the truth values
of the indicated propositions:
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Example 2. Using (3), the truth table for (~p)vq is

|~p , y(~p)vq

mme- |
==
m=ma | e
== m-

(4)

Note that the truth tables of (~p)v g and p= q are the same, in the sense
that the last columns are the same. In such a case we say that the propositions
(~p)vq and p=q are logically equivalent.

It is of course possible to motivate the assignment of truth values in (3), but
the motivarion for implication is never very convincing and the table is best
taken as a definition which is almost universally accepted.

As a point of interest, we remark that a proposition which has only T for its
truth value is called a tautology. A proposition which has only F is called a
contradiction.

Example 3. By (3) the table for p v (~p) is:

p|~p|pv(~p)
T| F T
F| T T

whence p v (~p) is a tautology. Similarly we see that p A (~p) is a contradic-
tion.

It is less trivial, though still quite easy, to construct the truth table to show
that

[(p=>q)r(g=>r)]=>(p>r) (5)

is a tautology. The formal name for (5) is the law of syllogism, and it is used all
the time in mathematics. It is so obvious if put in words that most people are
not aware that they are using it.



Methods of proof
There are three main methods of proof which one finds in analysis:

P1 Direct proof
P2 Contrapositive proof
P3 Proof by contradiction, or reductio ad absurdum.

By P1 we mean that, to prove p=gq we start with p, make various
deductions depending on our knowledge of the situation, and finish with q.

Example 4. Let us give a direct proof that (for natural numbers n), n even
implies n” even:

n even= n = 2a, for some natural number a,
>n’=4a’=2(2a?
> n-even.

Nothing could be simpler than this, and in general direct proofs are the
most natural and satisfying. Unfortunately, many of the most important
theorems of analysis cannot be proved directly, and we have to resort to the
indirect methods of P2 and P3. We now make the definitions:

Contrapositive proof. A contrapositive proof is one in which, instead of
proving p=q (which is what we really want) we actually prove that
~q = ~p. We call the proposition ~q = ~p the contrapositive of the proposi-
tion p=gq.

Proof by contradiction. In such a proof, instead of proving p = q (which is
what we really want) we actually prove that:

p A (~q) = any false propositionr.

Both of these proof methods will probably look rather peculiar to the
beginner, but nearly all books on analysis use them extensively, and indeed
usually without saying so.

The next theorem justifies the use of P2 and P3 in that it shows that they
are logically equivalent to the direct proof p =gq.

Theorem 1. (i) ~q = ~pislogically equivalent to p = q.
(ii) Letr be any false proposition. Then p A (~q)=> ris logically
equivalent to p = q.

Proof. We have to show that the truth tables for the propositions ~g = ~p,
and p A (~q) = r are the same as the table for p => g. Now by the definition (3)



we find that

p | q \~q\~r)|~q$~p|pm~q>\ r |1)A(~q):>r
T|T|F|F ) F F T
T|F|T|F F T F F
F|T|F|T T F F T
F|F|T|T T F F T

Columns five and eight of this table are identical with the last column of (3),
whence the theorem is proved.

Example 5. For natural numbers n let us use the contrapositive method to
prove that n” even implies n even (say p = ¢). Note that we proved ¢ = p in
Example 4. Of course g = p is quite a different proposition from p = g, and
the student is strongly warned never to say that: if g = p then p=>gq.

Now ~g means that n is not even, i.e. n is odd, i.e. n =2a — 1 for some
natural number a. Hence n° =2a(2a —2)+ 1, so that n” is odd, whence n* is
not even, which is ~p. Thus we have proved that ~q = ~p, so by Theorem
1(i) we see that p=gq.

Example 6. In the important Theorem 7 on p. 147, we use the proof by
contradiction. In that theorem we have to prove that, on a certain set,
continuity (p say) implies boundedness (g say). It is not relevant at this stage
that you know the meaning of the words continuity and boundedness since
we are concerned only with the structure of the proof.

In fact in Theorem 7 we prove that p A (~q)=r, where r is the false
proposition 1=<0. Informally the argument goes as follows: if we have
continuity and not boundedness then we are able to deduce that 1=<0, and
this contradiction shows that continuity implies boundedness.

Universal and existential quantifiers

These are rather fearsome logical names for two simple and useful things.
The symbol V is read as ‘for all’ and is called the universal quantifier. The
symbol Fis read as ‘there exists” and is called the existential quantifier. Apart
from this section we shall not usually employ these symbols, since we prefer
to use the relevant phrases. However, the student is likely to meet the
symbols in works on logic and in informal teaching in mathematics.

Example 7. We may assert as true that (i) x?=0 for all real numbers x, and
(ii) there exists a real number y such that y*= 16. Symbolically: (i) Vx € R,
x?>=0, and (ii) Iy € R|y* = 16.

In (i) we are expressing a general theorem about all real numbers, and in (ii)
we may note that y = 2 satisfies the condition, as does y = —2. When we say
‘there exists’ we mean, more precisely, that ‘there exists at least one’.



The proposition (iii) Vx € R, x* > 0 is false, since x = 0 is such that x” is not
greater than 0.

It is of crucial importance that the student realizes the difference between
the quantifiers ‘for all’ and ‘there exists’ and never casually interchanges
them in definitions or proofs.

Sometimes it is necessary to negate a proposition involving ¥ and 3. As a
general rule, in negating such a proposition we change V into 3 and change 3
into V, and finally negate any proposition following the quantifiers.

For example, the negation of 3a3bVc¢ such that p(a, b, ¢)is VaV¥b3c such
that ~p(a, b, ¢).

Example 8. The following is the definition that a sequence (x,,) converges to
zero (see Chapter 2):

Ve >0, dn, such that

x,|<e, Vn>n,. (6)

In this definition the Greek letter & (epsilon) denotes a positive real number
and must not be confused with € which means ‘belongs to’.
The negation of (6), i.e. (x,) does not converge to zero, is:

de >0,Vn,, In >n, suchthat =e¢. (7)

xrl

In words (7) says that: there exists a positive number & such that for all n,,
there exists n > n, such that |x,

= €.

Exercises 1.1

(Hints for some of these exercises are on p. 302)

1. Write down the truth table for p&gq.

2. Classify as tautology, contradiction, or neither: (i) p=>(p v q), (ii) p= ~p, (iii)
[pA(p=>q)]=>q, (iv) (~p=>p)r(p=~p).

3. Use a truth table to show that the law of syllogism is a tautology.

4. Use truth tables to show the logical equivalence (E) of each of:

(i) ~(prq) E(~p)v(~q)
(i) ~(pvq) E(~p)a(~q)
(iii) ~(p=q) Epo~q
(iv) palgvr) E(pag)vipnr).

5. If Stoke City avoid injuries then they will win the championship. They avoid
injuries or the referee is biased. If the referee is biased then the crowd is unhappy.
But the crowd is happy.

Given the truth of these propositions, will Stoke win the championship?

6. Letx € R; p denote x = 1; q denote x” = 1. Classify as true or false: (a) p=g, (b)
q=p-

7. Write each of the following propositions as p = g, or as p <>q. In each case classify
as true or false:

(i) 3x*+4=7if x =1, where x € R.

(ii) A necessary and sufficient condition for 3x’+4=7isx=1,where x € R.



(i) An integer greater than 2 is prime only if it is odd.
(iv) A sufficient condition that an integer is even is that it is a multiple of 4.
(v) zeCand z =1, 1f andonlyif,ze Cand z" = 1.
8. Forne N prove that n” even lmpllex n even.
9. Negate the following: If the lecturer is lazy then some students do not finish their
tutorial work.

2. Sets and functions

Simple set theory, and the concept of a function (also called a mapping or a
map) now appear in even the most elementary school textbooks of mathema-
tics. Consequently we give only a brief account (but adequate for the
purposes of basic analysis) which explains our notation and presents defini-
tions and some useful results.

A setis any collection of definite, distinguishable objects of our thought, to
be conceived as a whole. So said the great German mathematician G. Cantor
(1845-1918), the creator of set theory. His definition will do for us, though it
is regarded as naive by mathematical logicians.

The objects of his definition are called the elements of the set, or the
members of the set. Usually sets are denoted by capital letters and elements
by lower case letters. If X is a set then x € X means that x is an element of X,
and we also say that x belongs to X. If an object y isnot an element of a set X,
then we write y# X, and also say that y does not belong to X.

Example 9. If X is the set whose elements are the alphabetical letters a, b
and ¢ then we write X ={a, b. ¢}. It is usual to employ curly brackets to
enclose the elements of a set. To illustrate our notation we may say that b € X,
but d¢ X, and 2¢& X.

Example 10. A set may have ‘mixed elements’, e.g., X ={a., b, 3, my cat},
but such sets do not occur much in analysis.

Example 11. [tisincorrect tosay that {3, 1, 6, 1, 5} is a set, since by Cantor’s
definition the elements have to be distinguishable. Thus elements of a set
must appear once and only once in the set.

Example 12. A set remains the same if the elements are written in a different
order,e.g. {2, 4, 3, 1}isthe same setas {1, 2, 3, 4}. Of course it is usually moie
satisfying if the elements can be arranged in some ‘natural’ or systematic way.

In general it is impossible to write down all the elements of a set, e.g., we
cannot exhibit all the elements of the set of natural numbers N, and this is one
of the simplest sets in mathematics. In this case we write N={1,2,3, ...},
using curly brackets to enclose the elements and three dots . . . to imply that
the law of formation of other elements is ‘known’. More will be said about N
in Chapter 2.



Notation such as {x € N|x > 2} isread as ‘the set of all x belonging to N such
that x > 2. The vertical bar following N is read as ‘such that’. Another way of
writing {x e N|x >2}is {3,4,5, .. .}.

As another example, we have {x e R|x* =1} ={1, —1}.

We now define the basic notions of subsets, unions, intersections, and
complements for sets, together with related ideas.

Subset. If A and B are sets, then A is defined to be a subset of B if and only if
every element of A is also an element of B. If A is a subset of B then we write
A < B, orequivalently B> A. Also, if A © Bwe say that A is included in B,
that B includes A, or that B is a superset of A.

Equal sets. We define A =B if and only if A < B and B < A, which means
that A and B have the same elements.

Proper subset. We define A to be a proper subset of B, and we write A < B
strictly, if and only if A < B but A # B.

The empty set. If A is a set, then & ={x € A |x # x} is a subset of A, and we
call & the empty set. The set J has no elements.

There is a very important property of the empty set (J, namely that it is the
unique set which is a subset of every set.

To see this, take any set B. Suppose, if possible, that ¢J was not a subset of
B. Then there exists x € J\B, contrary to the fact that ¢J has no elements.
Hence & © B for every set B. By x € J\ B we mean x € & but x¢ B.

Now we show that J is unique. Suppose that ¢ is also a set which is a subset
of every set. Then ¢ = J. But we know already that J < ¢, so by the
definition of equality of sets we must have ¢ = J, whence J is unique.

Example 13. Two proper subsets of N are {1,3, 8}, and {1,3,5,7,.. .} the
set of odd numbers. Hence we may write {1, 3, 8} = N strictly.
Union of sets. The union of sets A and B is:
A U B = {x|x belongs to at least one of A and B}.
If S is a class of sets A then we define
U{A|A € S} ={x|x € A foratleast one A € S}.

Intersection of sets. The intersection of sets A and B is:
AnB={x|xeA and xecB}.
If S is a class of sets A then we define
MN{A|A € S}={x|xe Aforall A € S}.

Disjoint sets. Sets A and B are called disjoint if and onlyif AnB =, i.e. A
and B have no elements in common.

Example 14. {a, b, c}u{a, ¢, d}={a, b, ¢, d}; {b, c}{a, b, c}=1{b, c};

{a, b}n{c, d}=D.



