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Preface

Till the early fifties the theory of functions of several complex variables was mainly
developed by constructive methods of analysis. We emphasize the work of A. WEIL in
1935 and of K. OkA in the period from 1936 till 1951. WEIL generalized the Cauchy
integral formula to polynomial polyhedra in €™ and obtained an analogue of the Runge
approximation theorem for such polyhedra. Equipped with the Weil formula Oxra
solved the so-called fundamental problems (Cousin problem, Levi problem, et al.).

In the fifties H. CarTaAN, J. P. SERRE and H. GRAUERT discovered that by means
of the theory of sheaves introduced in 1945 by J. LERAY the constructive methods of
analysis in the theory of Oka can be reduced to a minimum and, moreover, that the
theory of Oka admits far-reaching generalizations. In the sixties L. HORMANDER,
J.J. Koux and C. B. MorrEY deduced the main results of OKA with the help of me-
thods from the theory of partial differential equations and obtained, in addition, esti-
mates in certain weighted L,-metrics for solutions of the Cauchy-Riemann equations.

During the fifties and sixties it seemed that the method of integral representations,
which works so successfully in the case of one variable, is not suitable to the case of
several variables, because it is troublesome and gives only very special results.

However, in the seventies integral representations turned out to be the natural
method for solving several problems related to Oka’s theory, which are connected
with the boundary behaviour of holomorphic functions. The basic tool is an integral
representation formula for holomorphic functions discovered in 1955 by J. LERAY,
which contains the Weil formula as a special case. Certain developments of this formula
made it possible to solve several of such problems that are not easily obtained with
other methods. Moreover, it turned out that by means of these formulas one can build
up a large part of the theory of functions of several complex variables in a new and
more constructive way.

Tt is the aim of this book to present such a new introduction to the theory of func-
tions of several complex variables, where the main results will be obtained in a strength-
ened form — uniform estimates for solutions of the Cauchy-Riemann equations, uni-
form estimates for extensions of holomorphic functions from submanifolds, uniform
approximation of holomorphic functions that are continuous on the boundary, et al.

It has been assumed that the reader has a certain knowledge of the theory of func-
tions of one complex variable and the calculus of differential forms (Stokes’ formula).

Chapter 1 starts with facts concerning holomorphic functions, plurisubharmonic
functions, domains of holomorphy and pseudoconvex domains. Then we deduce from
Stokes’ formula the Martinelli-Bochner formula and the Leray formula as well as
their generalizations to differential forms in ¢™ (Koppelman formula and Koppelman-
Leray formula).

In Chapter 2 first the Cauchy-Riemann equations are solved by means of integral
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formulas in pseudoconvex open sets in €. Then we prove this result on Stein mani-
folds, where an inductive procedure with respect to the levels of a strictly plurisub-
harmonic exhausting function will be used. For strictly pseudoconvex open sets with
C?-boundary, solutions of the Cauchy-Riemann equations with 1/2-Hélder estimates
are obtained. The identity of domains of holomorphy (Stein manifolds) and pseudo-
convex open sets in (" (complex manifolds with strictly plurisubharmonic exhausting
function) is proved, that is, the Levi problem is solved. Further, uniform approximation
theorems are proved.

Chapter 3 is devoted to strictly pseudoconvex open sets in €' with not necessarily
smooth boundary. By means of integral formulas the Cauchy-Riemann equations are
solved with uniform estimates in such sets. A uniform approximation theorem is
proved for functions which are continuous on a strictly pseudoconvex compact set
and holomorphic in the inner points. Further, for strictly pseudoconvex open sets D
with not necessarily smooth boundary, an integral formula is constructed which gives
bounded holomorphic extensions to D for bounded holomorphic functions defined
on the intersection of D with a complex plane. In Chapter 4 this result will be ge-
neralized to the case of an intersection with an arbitrary closed complex submanifold
in some neighbourhood of D.

Chapters 1 —3 are self-contained. Here we do not use without proof any result from
the theory of functions of several complex variables. Only in Chapter 4 we use without
proof some special results from the theory of coherent analytic sheaves, for the proof
of which we can refer to several books devoted to this subject.

In Chapter 4 our principal aim is to extend the integral formulas introduced in the
preceding sections to Stein manifolds. Moreover, in this chapter the Weil formula for
analytic polyhedra as well as its generalization to differential forms and a more
general class of polyhedra in Stein manifolds is proved. Some applications of these
formulas are given. In the Notes at the end some further applications are outlined.

In our opinion Chapters 1 and 2 can be used as an elementary introduction to the
theory of functions of several complex variables. Chapters 3 and 4 contain more
special and more difficult results obtained only recently by means of complicated
estimations, and references to the theory of coherent analytic sheaves. They can be
used as an introduction to one of the actual fields of research in complex analysis.

There is also another way to develop the theory of functions of several complex
variables by means of integral formulas. This way was outlined in 1961 by E. Brsuop
and is based on the concept of special analytic polyhedra. In distinction to the approach
presented in this book, the way of BisHOP is suitable not only for smooth complex
manifolds but also for analytic spaces with singularities. However, this way seems to
be more complicated and, above all, does not give uniform estimates, whereas in our
opinion the latter is the main advantage of the method of integral formulas.

Finally, we point out that in our opinion there are also further interesting pos-
sibilities for applying the method of integral formulas, for example to the theory of
CR-functions and to problems of complex analysis and integral geometry on pro-
Jective manifolds connected with the theory of R. PENROSE.

We thank Dr. B. JorIcKE (Berlin) who helped improve parts of the manuscript.
We thank also Dr. R. HoppNER and G. REIHER from the Akademie-Verlag Berlin for
support and cooperation. We are greatly indebted to Prof. H. Boas (New York) for
proof reading and removing a lot of mistakes (including the worst English ones).

Berlin and Moscow, July 1981 G. M. HENKIN and J. LEITERER
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1. Elementary properties of functions of
several complex variables

Summary. In Section 1.1 we define holomorphic functions of several complex variables
and prove simple properties of these functions. In Section 1.2, by means of a simple
extension of the Cauchy-Green formula to several variables, we solve the inhomogeneous
Cauchy-Riemann equations for some special cases. As a consequence we obtain a theorem
of Hartogs which gives examples of open sets in € (n = 2) where all holomorphic functions
can be continued holomorphically to a larger open set. Open sets for which this is not
possible are called domains of holomorphy. These are investigated in Section 1.3. Sec-
tion 1.4 is devoted to continuous plurisubharmonic and strictly plurisubharmonic C2-
functions. In Section 1.5, by means of these functions, pseudoconvex and strictly pseudo-
convex open sets are introduced. We prove that every domain of holomorphy is pseudo-
convex, but the converse (Levi’s problem) is left to Section 2.7. Sections 1.6—1.12 are
devoted to integral representation formulas for functions as well as for differential forms
n €. These formulas form the basic tool for the methods developed in the present book.

1.1. Holomorphie funections

We assume that the reader knows a certain amount of the theory of functions of one
complex variable. Nevertheless we begin with a proof of the Cauchy-Green formula
for one complex variable, because this proof is the model for the proofs of the integral
representation formulas for several complex variables which form the basis of this

book.

Notation. Let ¢ be the complex plane. By z,, x, we denote the real coordinates in
€1 such that €' >z = z, 4 iz,. For every complex-valued continuous function f in
an open set in ¢ we define (in the sense of distributions)

of 1 8f+18f of 1fof 1 of
0" 2 \6x, i omy)’ oz 2\6x, i 0a,)
of := gdz and éf::%d},
0z 0z
where z := 2; — ix,. Then the differential df of f can be expressed as df = &f -+ Ef

We also write d,f, 9,f and ézf instead of df, of and 6f to make clear that the differen-
tiation is with respect to z if f depends on other variables, too.

Recall that a C'-function f is holomorphic if and only if 5f = 0 (the Cauchy-Riemann
equations).

1.1.1. Theorem (Cauchy-Green formula). Let D — < C* be an open set with C!-
oundary 0D, and let f be a complex-valued continuous function on D such that of is
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also continuous on DY). Then

1 yde 1 (g d
f(z)~2 fLC_C__ff(C)AC,
m J & — 2mi {—z
D
Proof. Fix z ¢ D. Then, for{ € D \_ 2, d[(f($) dO)/(C — 2)] = 5f((:) AdE/(E — 2) and,
therefore, by Stokes’ formula, for sufficient]y small e > 0

1 JOd_ 1 [fE) 1 faf )nd

— F =

€D. (1.1.1)

2mi E— 2 27 —2z 2
1t —2l=¢ LedD eD,|{—z| >¢

It is clear that the right-hand side of this relation tends to the right-hand side of

(1.1.1) when & — 0. Consider the left-hand side. Since d¢ A d{/2i is the Lebesgue mea-
sure on (', Stokes’ formula gives

4 1 (Z‘—E)dé':l dZ A dE = 2qi .
L—2z g &2
I0—z|=¢ |E—2|=¢ Il—zl<e
Further
| f(i-) f()dé‘ = 2z max |f({) — f(z)] =0 for &—0.
—z IE—zl=¢
[{—2l=e
Hence
lim [ (©)de = 2nif(z)
e>0 4- — =z
[{—2l=¢

Since the first integral on the right-hand side of the Cauchy-Green formula (1.1.1)

depends holomorphically on z € D, and since 6f = 0 for holomorphic functions, we
obtain:

1.1.2. Corollary. Let f be a continuous complex-valued function in an open set D < €.
Then f is holomorphic in D if and only if Of = 0 in D.

1.1.3. Theorem. Let D — < (" be a bounded open set, and let f be a bounded continuous
complex-valued function in D. Then the continuous function
f(€) dE ndg

u(z) := —1— it b S 2e€D, (1.1.17)
27 i —z '
D

is a solution ofg—? = fin D,
z

Proof. First we consider the case that f is continuously differentiable in D. Fix& € D.
It is sufficient to prove that 6u/06z = f in some neighbourhood of & Choose a (-
function y on ¢ such that y = 1 in a neighbourhood V; —— D of & and 5 = 0 in
some neighbourhood of ¢* \ D. Then u = u; -+ u,, where

Lf )f(6) dE A dC . _Lf(l — 20 S A ndL

Us(Z) 1=
27i 2 c—z

U(2) 1= — ¥ ) o
D

1) This means, 8f/0z which is defined in the sense of distributions in D is continuous in D
and admits a continuous continuation to D.
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Since 1 — z = 0 in Vg, u, is holomorphic in V,, that is, éuz = 0 in V. Therefore it
remains to prove that 0u,/0z = fin V. Since y = 0 in a neighbourhood of €* \ D,
the function yf can be continued by zero to €1, and we obtain

1 x(:)f(é)dEAic:_fo(uz)f(cw)dhdc_

WA = o [—z omi z

g ct
Taking into account that 8/8z[y(¢ + z) f(& + 2)] d = éc[l(c + 2) f(€ + z)], we con-
clude that

bu(x) 1 f_fig[x(c+z)f(é+z)]/\déz 1 f@_{x(&)f(mwg

0z 27 . —=z

¢ 271
cr ol
Application of Theorem 1.1.1 with f replaced by yf and D equal to a disc containing
the support of y now gives that 0u,/0z = fin V.
Now we consider the case that f is an arbitrary continuous and bounded function
on D. Choose a sequence f; of continuously differentiable functions which converges
uniformly on D to f. Then the sequence

1 deé ade
ug(z) 1= -Tmffk(cé _Cz/\ g
D

converges uniformly on D to u, and therefore we have in the sense of distributions
Ou/0z = lim duy/0z = lim f, = f. @

Now we pass to the case of several complex variables.

Notation. Let ¢" (n = 1, 2, ...) be the space of all n-tuples z = (2, ... , 2,) of complex
numbers z;. The components z,, ... , z, of z € " will be called the canonical (complex)
coordinates of z. By «,, ... , x5, we denote the real coordinates in O™ such that z; = z;
+ i%j . For Y & €7, let C°(Y) be the space of continuous complex-valued functions
on Y. If DS " is open, then C¥D) (k = 1,2, ..., o) is the space of k-times con-
tinuously differentiable (with respect to the real coordinates z;) complex-valued
functions in D, and C%(D) is the subspace of all f ¢ C¥(D) vanishing outside a compact
subset of D. We introduce the differential operators

Gl 1/0 1 8 d 1/(8 1 8
—=—(—44 — and — =i — —— .
0z; 2 \ 0wy i Om; ., 0z; 2 \ Ox; i 0%y
These operators 0/6z; and 8/08z; will also be denoted by &; and 51, respectively. A multi-
order is an n-tuple k = (k,, ... , k,) of non-negative integers. For every multi-orfler k
we write 2¥ :=2h . 2k if 2€ @, k!:=Fk!..k,!, OF:= %o ..0 0 and OF :=
= @10 ..o 8 If DS €"is open and f € C°(D), then we define

of = % gdz, and 6f := ¥ g_fdz, in D.

j=10%4 i=1 0%

Then df = &f + &f in D.

(Remark. In general, 6f and df are differential forms whose coefficients are
distributions. However, in this book we need df (8f) only if of (3f) is continuous.)

A set P S (" is said to be an open (closed) polydisc if there are open (closed) discs
Py, ..., Pyin ¢ such that P = P, X ... X P,.If & is the center of P;, then the point
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(&1, ..., &y) is called the center of P. If r; is the radius of Py, then (ry, ..., r,) is called
the multi-radius of P.

1.1.4. Lemma. Let a; be complex numbers defined for all multi-orders k. Suppose that
for some & € €™ (&5 == 0 for all j) the power series Z ar&* converges. Then the series Z az®

converges normally in the polydisc |25 < |&|,j = 1, ..., n, that is, for all r < 1
Y sup |apk| < 0.
ko lzjl=rl&jl
Proof. By hypothesis there is C < 0o such that |a;&¥ < C for all k. Consequently,
Z sup |ak2k| <027L—I +kn< OO.
k2l =rléj)
1.1.5. Theorem. Let D & C" be an open set and f a complex-valued function in D.
Then the following conditions are equivalent:

i) feC%D and@f—Oan
(ii) f € C°D) and f is holomorphic in each variable z; when the other variables are kept

Jfixed.
(iii) f € C%D) and, for every polydisc P = P, X ... X P, cc D,
f(&)dé A ... AdE,
- ; P, 1.1.2
IO = iy G-l e

8P; X...X3Pxn
(iv) f admits local power series expansions, that is, for every point & € D there are
complex numbers a; defined for every multi-order k such that, for all z in some neighbour-
hood of &,
f2) = X ax(z — &) (1.1.3)

k

If these equivalent conditions are fulfilled, then, moreover :
(v) feC>(D).
(vi) For every polydisc P = P; X ... X P, =< D and every multi-order k,
() — &  f§) G A ndE, zeP.  (L14)
(27i)" (G — )P (Ca — za T

AP; X ... X3Py
(vii) The coefficients in the power series expansion (1.1.3) are uniquely determined,
where

_ 8 (1.1.5)
k!

(viii) The power series expansion (1.1.3) converges uniformly in each polydisc P — = D
centered at &.

Proof. (i) & (ii) according to Corollary 1.1.2. By repeated use of (1.1.1), we obtain
the implication (i) = (iii).

We prove that (iii) = (iv). Let { € D and P = P, X ... X P, =< D be a polydisc
centered at £. Since forz ¢ P and{ € 8P, X ... X 8P,

1 g (7 — E])kl e (20 — £n)k”

(Cl: 721) (Cn o z,,) k..., kn=0 (Z1 — 51)k'+1 (Cn — ‘fn)kﬂ_l
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with uniform convergence in ¢, it follows from (1.1.2) that

o[t £0)dE A . AL, .
=& [W f (51—51»'61“...(:,,—sn)k"“] HEElRy
9P, X...X3Pn (1.1.5%)

Now we prove that (iv) = (ii). It follows from (1.1.3) and Lemma 1.1.4 that f is
locally the uniform limit of polynomials in z,, ... , 2,. Since such polynomials fulfil (ii),
and since the uniform limit of continuous functions is continuous and the uniform
limit of holomorphic functions of one complex variable is holomorphic, we conclude
that f satisfies condition (ii).

Now we suppose that the equivalent conditions (i)—(iv) are fulfilled. Then (v)
follows from (iii) and (vi) can be obtained by differentiation under the sign of inte-
gration in (1.1.2). Property (vii) follows, having chosen a sufficiently small polydisc
P = P, X ... X P, centered at &, by the following computation, which is permissible
in view of (1.1.4) and Lemma 1.1.4:

k! (€ — &V AL A ... Adly
ak = —
et (271)" % “ (G — &HFE ... (E — Gt
OP; X...X9Pn
k! (2mi)"
= S —7:— OHE — EV|pee = K .

(viii) follows from (vii), (1.1.5) and Lemma 1.1.4. |l

1.1.6. Definition. Let D & €™ be an open set. A complex-valued function f in D
is said to be holomorphic (or analytic) if the equivalent conditions in Theorem 1.1.5 are
fulfilled. The set of all holomorphic functions in D will be denoted by O(D).

1.1.7. Corollary. For every open set D & C", O(D) is a ring, that s, if f, g € O(D),
then f + g € O(D) and fg € O(D). Further, if f € O(D) and f(z) 4= 0 for all z € D, then
1/f € O(D).

Proof. This follows from condition (ii) in Theorem 1.1.5 and the corresponding
properties of holomorphic functions of one complex variable.

1.1.8. Corollary (Maximum principle). Let D & €™ be an open set and f ¢ O(D).
Suppose that there exists a point & € D such that |f(z)| = |f(&)| for all z € D. Then f is
constant in D if D is connected.

Proof. This follows from condition (ii) in Theorem 1.1.5 and the maximum principle
for holomorphic functions of one complex variable. il

1.1.9. Corollary. Let D & C™ be an open set and f; € O(D). If f; —f when j — oo,
uniformly on every compact subset of D, then f € O(D).

Proof. This follows from condition (ii) in Theorem 1.1.5 and the corresponding
property of holomorphic functions of one complex variable. Clearly, it can also be
obtained from condition (iii) in Theorem 1.1.5. [l

1.1.10. Corollary (the uniqueness of holomorphic continuation). Let D & C" be an
open set and f € O(D). If there is a point & € D where 8%f(&) = 0 for all multi-orders k,
then f = 0 in D if D is connected.

Proof. This follows from condition (iv) and relation (1.1.5) in Theorem 1.1.5. [l
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1.1.11. Corollary. For every open set D S C" and all multi-orders k, we have
8*0(D) = O(D).

Proof. This follows from property (vi) in Theorem 1.1.5. [l

L1.12. Corollary (Cauchy’s inequality). If f is holomorphic in the polydisc
P:={zeC" |z <rpj=1,..,n}, where 0 <r; < 00, j=1,...,n, then for all
multe-orders k

[6%(0)] < k! r~* sup |f(2)] .
2eP
Proof. This follows from property (vi) in Theorem 1.1.5. |

1.1.13. Theorem. Let D & (" be an open set. Then, for every compact set K — — D
and every multi-order k, there exists a constant C = O(K, k) such that

max |0%f(2)| < C [|f| dos, forall fe OD),
ze K D

where doy, ts the Lebesgue measure in C™.

Proof. First let n = 1. Choose x € C3°(D) such that y = 1 in a neighbourhood U,
of K. Then, by (1.1.1), for every f € O(D)

_ =1 [f&)8y() nde
2 E—2z ’
D\ Uk

1(2) f(2)

and differentiation leads to the required estimate. Repeated use of this gives the
theorem for polydiscs D of arbitrary dimension. The general case follows by use of
a covering of K by a finite number of polydiscs == D. |l

1.1.14. Corollary (Stieltjes-Vitali). Let D & €™ be an open set and let f;, be a sequence
of holomorphic functions in D which is uniformly bounded on every compact subset of D.
Then there 1s a subsequence fy, converging uniformly on every compact subset of D to
a limit wn O(D).

Proof. Since df; = 0, it follows from Theorem 1.1.13 that all first-order derivatives
(with respect to the real coordinates) of f; are uniformly bounded on any compact
subset of D. Hence the corollary follows from Ascoli’s theorem and Corollary 1.1.9. [

1.1.15. Definition. Let D & €™ be an open set. A map f = (f;, ... , fu): D — €™ is said
to be holomorphic in D if f;, ... , f,, € O(D). The set of all holomorphic maps f: D — ¢'™
will be denoted by O™(D). If f € O™(D) and & € D, then the matrix

af,@))f:lw-’m
0&

is called the (complex) Jacobi matriz of f at &. f is called regular at & € D if rank J(&)
= min {n, m}. Let D, @ & C" be open sets. A biholomorphic map from D onto G is by

definition a bijective map f from D onto @ such that both f ¢ 0*(D) and f-1 ¢ (R
Then we shall also say that f is biholomorphic in D.

1.1.16. Proposition. Let D & €™ be an open set and f = (f,, ... , fn) € O™(D). Then
(i) For every & € D,

fE+2) =f(&) + IfE) 2 + O(I2]2) when €73z -50. (1.1.6)

(j is the row index)

Ji(&) = (

B=1, ...,
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(ii) If g is a continuous complex-valued function in some neighbourhood of f(D), then
(¢ the sense of distributions)
0gef) & 090

8ZI k=1 af]c 821

Jor j=1,..,n, (1:1.7)

and B
ooh) _ 5 Qe o i1 n. (1.1.8)

Oz, k=1 8f, 02
Proof. Since éf, =0 for j=1,...,n, and d =0 + 0, (1.1.6) follows from the

Taylor formula. Since d = 0 + 3 a.nd Gfk = 6fk = 0, we obtain
m (0(g 0
L(( Loz, + XA >=d(g°f)

j=1 de

dg dg - dg aflc dg Ofk
= d k d k >
AZl(aflc Ly T f) §1kzl(aflcazj sy fkazd z,)

which implies (1.1.7) amd (1.1.8) by comparison of the coefficients of dz,, ..., dz,,
dz;, ..., dze.

1.1.17. Corollary. Let D & C", G = €™ be open sets, and let f € O™D), g € OXG)
such that f(D) S G. Then g o f € O¥ D) and

Jyor(&) = J(f(&)) Jf&) forall &eD. (1.1.9)
Proof. That g o f € O¥(D) follows from (1.1.8). (1.1.9) follows from (1.1.7). |l

1.1.18. Theorem (Implicit function theorem). Let U be a neighbourhood of & € O™ and
f e OMU). Then f is btholomorphic in some neighbourhood of & if and only if

det J,(&) ==0. (1.1.10)
Proof. It follows from (1.1.9) that (1.1.10) is necessary. We prove that condition

(1.1.10) is sufficient. Without loss of generality we can assume thaté = 0, f(&§) = 0,
and J,(£) is the unit matrix. Denote by id the identity map of € and define

fi=id—f on U.
Choose a neighbourhood V of 0 € €™ such that V =< U. Then, by (1.1.6), for some

C < oo
If(z)] £ Clz|2 for z€eV.

We use the notation Ey(d) := {z € €™: |z| < d},0 > 0, and choose ¢ > 0 so small that
e < 1/2C and Ey(2¢) S V. Then f(Ey(g/2¥)) S Ey(g/2¥*+1) for k =0, 1,2, .... Conse-
quently, the series

= Zf"‘ , Wwhere f* :=f~o 0f~,
st & times
converges uniformly on Ey(e) and h(Ey(e)) S Ey(2¢) S U. As the uniform limit of
holomorphic maps % is holomorphic. Further, (id + k) o f = fo (id + k) = id.

1.1.19. Corollary. If X & C"and k € {1, 2, ... ,n — 1}, then the following conditions
are equivalent:

(i) For every point & € X there exists a biholomorphic map f = (fy, ... , fa) in some
neighbourhood U of & such that X n U = {z € U: f,1(2) = ... = fa(z) = 0} .
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(ii) For every point & € X there exist a neighbourhood V of & and a regular holomorphic
map g: V — C"* such that X n V = {z € V:g(z) = 0}.

Proof. The implication (i) = (ii) is trivial. We prove that (ii) = (i). Let & ¢ X and
let V, g as in condition (ii). Denote by @ the linear map from €” into €"—* defined by
the Jacobi matrix J,(£). Since rank J,(&) = n — k, G is onto and we can find a linear
map A: " — C* such that the map 4 @G: € — ¢ defined by (4 ®G) (2)
:= (4(2), G(2)) is invertible. Define f(z) := (4(z), g(z)) for z € V. Then det Jy(&)
= det A @G =0 and, by Theorem 1.1.18, f is biholomorphic in some neighbourhood
US Vofé SinceX nU = {z € U:g(z) = 0}, and since (fi, 1, ... , fa) = g, it follows
that X n U = {2 € U:fr,1(2) = ... = fulz) = 0}.

1.1.20. Definition. Let D & €™ be an open set. A subset X D is said to be
a complex submanifold of €™ if the equivalent conditions (i) and (ii) in Corollary 1.1.19
are fulfilled. If, moreover, X is a closed subset of D, then X is called a closed complex
submanifold of D.

It follows from condition (i) in Corollary 1.1.19 that every complex submanifold of
C™ in a natural way becomes a complex manifold in the following abstract sense:

1.1.21. Definition. A complex manifold of complex dimension n is a real 2n-dimensional
C*-manifold X together with a family {(Uj, ¢;)};c; satisfying the following con-
ditions:

(i) For every j € I, U; is an open subset of X, and |J U; = X.

jeI

(ii) For all j € I, @; is a C*°-diffeomorphism from U], onto some open set in €.

(iii) For all 4,5 €I, g0 @' is a biholomorphic map from ¢(U; n U;) onto
p5(Us 0 Uy).

Then a couple (V, y) is called a system of holomorphic coordinates in V, if the family
{(Uy, @) }jer v {(V,y)} fulfils conditions (i)—(iii). A family (V,, y,).cs is called
a holomorphic atlas of X if every (V,, y,) is a system of holomorphic coordinates and

X = U V, (In particular, the system {(Uj, ¢;)}jc; above is a holomorphic atlas of X.)
x€A
Every open subset of a complex manifold becomes in an obvious sense a complex

manifold.

A function f defined on a complex manifold X is said to be holomorphic on X if,
for every system (V, ) of holomorphic coordinates in V¥, the function fo p1 is
holomorphic on (V). If X, Y are two complex manifolds, then a map f: X — ¥ is
called holomorphic if, for every system (U, ¢) of holomorphic coordinates in X and
every system (V, ) of holomorphic coordinates in Y, the map po fo ¢! is holo-
morphic in (U n f~1(V)). If, moreover, f is a bijective map from X onto ¥ and f-1 is
also holomorphic, then f is said to be biholomorphic from X onto Y. If there exists
a biholomorphic map from X onto Y, then X and Y are called bikolomorphically
equivalent.

A subset Z of a complex manifold X is said to be a complex submanifold of X if, for
every system (U, ¢) of holomorphic coordinates in X, (U n Z) is a complex sub-
manifold of ¢(U). If, moreover, Z is a closed subset of X, then Z is called a closed
complex submanifold of X. Every complex submanifold of a complex manifold becomes
in an obvious sense a complex manifold.

If U is an open set in a complex manifold, then we denote by O(U) the set of all
holomorphic functions in U, and by 0% U) we denote the set of all holomorphic maps
from U into C*.



