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Preface

Advanced ceramics and ceramic matrix composites are finding increasing
use in modern technological applications as ever more stringent demands are
placed upon material’s properties. This has led to a significant expansion over
the past two decades, in terms of research and development into optimising the
properties of these generally brittle and unforgiving materials. However, whilst
advanced ceramics and ceramic composites have many potentially useful proper-
ties, they can be extremely difficult to fabricate into usable artefacts. This has
resulted in an ever increasing emphasis being placed on advanced ceramic proces-
sing and technology.

As long ago as 1972 Stuijts emphasised the need for precise control of
microstructure as a means of achieving control of the properties of the final
component. This approach, which is strongly reflected throughout the current
book, must begin with the precursor powders and continue through to green
body formation and the densification of the body via some sintering mechanism.
Not only must accidental variations in the microstructure be avoided, but the
design of the microstructure must be optimised with the final application of
the component in mind—and then achieved.

This book, the first of two volumes, contains a series of independent chap-
ters, each focussing on a different aspect of ceramics processing. It is not in-
tended that these chapters should form a complete portfolio of all the possible
techniques currently available for fabricating ceramics; such an approach would
be more at home in a ceramics encyclopedia. Rather the aim is to offer the views
of leading experts as to the current state-of-the-art of a number of ceramics
processing options and, most importantly, the future directions which they see
their fields taking. The two volumes, then, are aimed at the materials engineer
who already has a grasp of the fundamentals underlying ceramic science and
engineering and who is now looking to expand his or her knowledge of proces-
sing techniques and their underlying philosophies.

vii



viii Preface

For a number of reasons this text has been along time in the making and I
would like to extend my heartfelt thanks to all the authors (and the publisher)
who, without exception, have shown great patience. In particular, I should like
to thank those authors who met the original manuscript deadlines and then
found themselves, some time later, having to significantly update their chapters.
Finally, I should like to thank Pam and Elaine for their excellent help in typing
some of the incoming manuscripts.

This volume is dedicated to the memory of Professor Bill Knapp, former
member of the Department of Materials Science and Engineering at the Univer-
sity of California at Los Angeles. Originally to be Bruce Kellet’s co-author for
the first chapter, Bill was tragically killed in a hit-and-run accident whilst out
jogging one morning in late 1985. Bill was a very fine ceramist, but more impor-
tantly, he was a very special man.

Nottingham, England Jon G.P. Binner
June, 1990
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Advanced Processing Concepts for
Increased Ceramic Reliability

*
B.J. Kellett T and F.F. Lange

+ Ecole Polytechnique Federale de Lausanne, Department
des Materiaux, Laboratoire de Ceramiques, 34 ch. de
Bellerive, CH-1007 Lausanne, Switzerland.

* Materials Department, College of Engineering,
University of California at Santa Barbara, Santa
Barbara, CA 93106, USA.

1. INTRODUCTION

Man's skill in processing functional ceramics dates back many millennia,
preceding the introduction of more formable and less brittle materials, viz.
metals, that have since received more economic, technological and scientific
attention due to their deserved engineering importance. Ceramic materials,
with their multiplicity of elemental combinations and structural
arrangements, produce a multitude of unique properties, which are still being
uncovered. Today, advanced ceramics are finding potential applications
ranging from advanced heat engines to communication and energy transmission
and they are emerging as the leading class of materials needed to implement
many advanced technologies.

Engineering implementation of advanced ceramics is still hindered by
their formability and brittle nature; however ceramic processing technology
has advanced little beyond the needs associated with functional, traditional
ceramics. Such traditional approaches inherently lack a clear methodology
for controlling microstructural heterogeneities and uniformity. This lack
of processing control leads to property variability and consequent uncertain

engineering reliability.



2 Advanced Ceramic Processing and Technology

The objective here is to review new approaches to powder processing
that minimize heterogeneities common to this 'many bodied' problem. The
review will start by outlining other approaches to ceramic processing. New
thinking concerning densification will set the stage for discussions
concerning new approaches to powder preparation and consolidation that
emphasize the colloidal approach.

2. PROCESSING METHODS

Although powder methods dominate ceramic forming, ceramics can also be
formed by glass-ceramic and gelation methods.

2.1 Glass—Ceramic Methods

Glass-ceramic methods can be used for compositional systems with
relatively small free energies of crystallization (e.g. silicates) so that
solidification occurs before crystallization. Direct crystallization from
the melt must be avoided because very large grains result which produces a
relatively friable material. Shapes are formed by conventional high
temperature glass processing to take advantage of Newtonian rheology.
Crystallization is induced by a two-step nucleation/growth process at
moderate temperatures; however complete crystallization is rarely (if ever)
achieved. Hence ceramics produced by the glass-ceramic method contain a
residual glass phase which degrades the mechanical properties at high
temperatures. Ca’lcu’lations“'z) suggest that residual glassy pockets within
a polycrystalline material can be thermodynamically stable. Many advanced
structural ceramics (e.g. silicon nitride and carbide) decompose before
melting, whereas others crystallize too readily for use of this method. The
glass-ceramic process 1is thus limited to materials that melt and do not
readily crystallize.

2.2 Gelation Methods

Gelation methods are analogous to the glass-crystallization method in
that processing starts with a metastable system. With this method, soluble
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metal-organic precursors are 'gelled' (e.g. hydrolysis of alkoxides). After
the liquid is removed, organic residuals are removed by heat treatment
preceded by crystallization and densification. Unlike the glass-ceramic
method, compositions are not restricted to those that are glass formers at
high temperature, viz. crystallization is induced by heating and not cooling.

One of the major attributes of the gelation method is that multi-
element, metastable systems (intimately mixed at the molecular level) can be
produced at Tlow temperatures. Phase partitioning from these metastable
systems can be used to control microstructures by heat treatment at higher
temperatures.

Removal of the liquid is one major limitation of the gelation method.
Capillary pressure causes the Tow density network to shrink during drying(3).
Shrinkage initiates at the surface and generates stresses that usually cause
the drying system to break apart into small granules (analogous to the mud
crack pattern observed on a drying lake bed). The shrinkage stresses can be
reduced by extremely slow drying to produce sound, monolithic bodies, but
these drying periods (of the order of weeks) are not practical. Surface
tension and thus capillary pressures on the network can be completely
eliminated by removing the fluid phase at temperatures and pressures above
the fluid's critical point (i.e. super critical drying)(4). Super critical
drying (used for more than 40 years to produce aero-gels) results in very low
density networks (relative densities <0.2) and thus a large degree of
shrinkage occurs during heat treatments that produce crystallization and
densification. Low densities and hence large shrinkages are the second major
drawback of the gelation method. A third, but Tlesser problem is the
elimination of the organic radicals bound to the polymer networks which must
be carefully controlled to avoid gas entrapment, etc. These limitations
become greater with component size.

Gelation methods are generally limited to the processing of thin films,
fibres and powders.
2.3 Powder Methods

Powder methods are used to fabricate most advanced ceramics. They

involve powder manufacture, preparation of the powder for consolidation,
consolidation of the powder into a shape and densification (elimination of
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the void phase). Post-densification heat treatments can develop specific
microstructures to optimize certain properties.

Although powder methods are much less restrictive than those discussed
above, its 'many-bodied' nature makes it prone to heterogeneities. One of
the major causes of these heterogeneities is the powder itself. Nearly all
current powders are agglomerated, i.e. groups of either weakly or strongly
bonded particles. Agglomerates pack together during consolidation to produce
compacts with differentials in packing density leading to poor densification
and the formation of crack-1like voids which can be a major strength degrading
flaw popu'lation(s).

It is common practice to reduce agglomeration size by attrition milling.
Stud'ies(6) have shown that milling has a low probability of eliminating all
agglomerates. It also introduces contaminates and large inclusions not
acceptable for the fabrication of reliable, advanced ceramics. Various
organics can be added as helpful binders and/or lubricants during
consolidation. For rheological consolidation methods (e.g. slip casting,
tape casting of thin sheets, extrusion and injection moulding), the non-
volatile residual polymer content of the system can be between 40 and 50
volume percent. Elimination of this polymer (e.g. through pyrolysis) is not
only time consuming (days) but can also produce disruptive phenomena.

The most common method of consolidating powders is via dry pressing in
which forces are applied to powder contained within a die. Since dry powders
are naturally agglomerated and the consolidation of agglomerates must be
avoided to produce reliable ceramics, this technique is undesirable. In
addition, since dry, fine powders do not flow to uniformly fill pressing
dies, powder slurries with polymer additions are currently spray dried to
produce large, flowable particles (>50 pm agglomerates). These massive
particles (agglomerates) produce larger separating forces due to differential
acceleration which can overcome attractive (e.g. Van der Waals) forces during
flow. Thus, although spray drying is helpful in producing a flowable powder,
it can introduce large agglomerates and thus produce large crack-like voids
during densification.

Powders are also consolidated from slurries. Current methods include:
filtration (slip casting), electrophoresis, evaporation (casting of thin
sheets, i.e. tape casting), extrusion and injection moulding. Although these
slurry state consolidation methods are adaptable to new colloidal methods



