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PREFACE

Studies of nonlinear phenomena which occur in mathematical models and
which are observed in experiments profit both from a general knowledge of the
theory of dynamical systems and bifurcations, and from the experience accu-
mulated in an interpretation of specific examples. The most interesting and
important nonlinear phenomenon that has come to prominence recently is the
chaotic behaviour of deterministic dissipative systems. The investigation of
chaotic dynamics has undergone an explosive development over the past ten
years but the results are still mostly scattered throughout the journal literature.

The number of interested students and research workers from diverse fields,
ranging from mathematics and physics to engineering sciences and biology,
increases continuously and many of them will find it useful to have an introduc-
tory text, that surveys both theoretical and experimental aspects of chaotic
behaviour. We have attempted to provide this in the present book.

The introductory chapter discusses the significance of chaos as a model of
many seemingly random processes in nature and a definition of the class of
dissipative systems that we will study.

The second chapter considers basic notions of the theory of dynamical
systems. The difference between linear and nonlinear systems is illustrated and
asymptotic behaviour is discussed in more detail. Definitions of chaos and of
strange attractors and a description of chaotic behaviour in the frame of ergodic
theory are then surveyed.

The third chapter deals with qualitative changes of asymptotic behaviour as
a chosen parameter is varied. These changes (‘bifurcations’) may lead to chaos
in several well-defined routes. The role of bifurcation theory in understanding
the onset of chaos is illustrated by a number of characteristic examples.

A review of the numerical methods used both in the treatment of mathemati-
cal models and in the interpretation of experimental data is provided in the
fourth chapter. Methods for parametric dependences and for a characterization
of chaotic behaviour are stressed.

The fifth chapter surveys some characteristic experimental observations of
chaotic behaviour and includes data from mechanical systems, electronics,
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lasers, semiconductors, chemical and biological systems and hydrodynamics. It
is stressed that most of these observations have many common features even
though their physical nature is different.

The sixth chapter is based on our own experimental and numerical work and,
using two detailed examples, it illustrates an interpretation of chaotic experi-
mental data on the basis of one-dimensional mappings, and the role of numeri-
cal studies of bifurcations in the interpretation of complex periodic and chaotic
behaviour in the system of two coupled cells.

In the final chapter we have tried to survey ways of approach to modelling of
spatio-temporal chaotic behaviour in distributed systems. The results of analysis
of cellular automata, coupled map lattices and partial differential equations are
briefly reviewed and generally applicable methods are stressed.

The book contains two appendices. A brief survey of some normal forms of
planar vector fields and the corresponding bifurcation diagrams can be found in
the Appendix A. A program for continuation of stationary points and periodic
orbits of dynamical systems and for the location and continuation of local bifurca-
tion points is given in the Appendix B. Hence, an interested reader can with the
help of these two appendices and the problems discussed in Chapters 5 and 6
obtain his own experience in the analysis of bifurcations and chaotic behaviour.

The individual chapters can be studied independently. References connected with
the subjects discussed are given at the end of each chapter. In recent years the num-
ber of references has increased exponentially, and hence, we have had to limit our-
selves to those references that, in our opinion, best illustrate the problems studied.

The study of chaotic behaviour often requires a profound knowledge of
different branches of mathematics. In attempting to provide an objective ex-
planation of various aspects of chaos which is also accessible to readers who do
not possess such knowledge we have made a number of simplifications in the
explanations and used graphical representation of the features studied. We
would be grateful to readers for any comments that may improve the text.

The text reflects the results obtained in our research group over the last 10 years.
We would like to express our sincere thanks to our colleagues, Alois Kli¢, Milan
Kubicek, Martin Holodniok, Milos Dolnik and many others (including a number of
students) for the discussions and the friendly atmosphere which helped to write the
book.

We are thankful to Dr. S. Capelin, Ing. B. Kyselova, Ing. J. Malatkova and to
other members of the staff of Academia Publishers, Prague and Cambridge
University Press, Cambridge for their persistent and invaluable help with the
transformation of the manuscript into book.

Last but not least we are indebted to Dana Dopitova and Edita Padusakova
for their assistance in producing the manuscript.

M. Marek
1. Schreiber



CONTENTS

Preface ix
Introduction 1
References 8
Differential equations, maps and asymptotic behaviour 11
2.1 Time evolution and dynamical systems 11
2.2 Stationary points 16
2.3 Periodic oscillations 20
2.4 Asymptotic behaviour and chaotic attractors 25
2.5 Entropy, Lyapunov exponents, dimension and the effect of small random per- 36
turbations )
References 48
Transition from order to chaos 51
3.1 Bifurcations of dynamical systems 51
3.2 Local bifurcations and dependence of solutions on a parameter 54
3.3 Bifurcations and chaos in one-dimensional maps 61
3.3.1 Period-doubling sequences and universality 64
3.3.2 The U-sequence 71
3.3.3 Chaotic behaviour 74
3.34 Intermittency 77
3.3.5 Crises and transient chaos 79
3.3.6 Circle maps i 81
3.3.7 Transition from quasiperiodicity to chaos 85
3.3.8 Transition from phase-locked dynamics to chaos 88
3.4 Transition to chaos in multidimensional systems 90
References 99
Numerical methods for studies of parametric dependences, bifurcations and chaos 103
4.1 Continuation of periodic orbits and their bifurcations 104
4.2 Lyapunov exponents from mathematical models 109
4.3 Computation of Poincaré sections for continuous orbits 113
4.4 Reconstruction of attractors from experimental time series 114
4.5 Lyapunov exponents from time series 115
4.6 Dimensions and entropies of attractors 117
4.7 Power spectra 120
References 123
Chaotic dynamics in experiments 126
5.1 Introduction 126

5.2 Nonlinear circuits 128



viii

5.2.1 Noise generator
5.2.2  Experiments on period-doubling
5.2.3  Other routes to chaos
5.3 Mechanical and electromechanical systems
5.4 Solid state systems
5.4.1 Semiconductors
5.4.2  Josephson junctions
5.5 Chaos in nonlinear optics
5.6 Chaos in chemical systems
5.6.1 Routes to chaos in the BZ reaction
5.6.2  U-sequence in the BZ reaction
5.6.3  Periodic-chaotic sequence
5.6.4  Chaotic oscillations in other chemical systems
5.7 Chaotic oscillations in biological systems
5.8 Transition to turbulence in hydrodynamics
5.8.1 Taylor-Couette flow
5.8.2 Rayleigh-Bénard convection
5.8.3  Other fluid-dynamic systems
References
Forced and coupled chemical oscillators — a case study of chaos
6.1 Periodically forced continuous stirred tank reactor
6.1.1  Single pulse experiments - phase transition curves
6.1.2  Experiments with periodic pulses
6.1.3  Geometrical models for PTCs
6.1.4  TIterated PTCs — model for periodic forcing
6.1.5  Numerical computations and comparison with experiments
6.2 Coupled reaction-diffusion cells
6.2.1  Model of two coupled reaction-diffusion cells
6.2.2  Stationary solutions
6.2.3  Classification of periodic solutions and their bifurcations
6.24  Dependence of periodic solutions on D,
6.2.5  Behaviour of periodic solutions in the parameter plane (B, D))
6.2.6  Period-doublings and chaotic attractors
6.2.7  Intermittency, multiple attractor behaviour and crises
6.2.8. Lyapunov exponents, dimensions and power spectra
6.2.9 One-dimensional mapping
6.2.10 Transition from torus to chaos
6.2.11 Larger arrays of coupled cells
References
Chaos in distributed systems, perspectives
7.1 Introduction
7.2 Cellular automata
7.3 Coupled map lattices
7.4 Partial differential equations
7.5 Perspectives
References
Appendix A Normal forms and their bifurcation diagrams
A.1 Dynamical systems on a line
A.2 Dynamical systems on a plane
References

Appendix B CONT - a program for construction of solution and bifurcation dia-

grams
Index

128
132
135
148
154
154
159
161
165
168
169
169
174
177
179
179
183
188
190
203
203
206
208
211
214
217
221
222
224
229
232
239
245
251
253
256
257
262
269
272
272
273
274
278
283
285
289
290
294
301
302

363



1

Introduction

Observations of both natural and man-made systems evolving in time reveal
an existence of various types of dynamics ranging from steady time-independent
structures to very complicated nonperiodic oscillations. It is well known that the
evolution of nonperiodic motions forms a basic problem in studies of hydrodyna-
mical turbulence. However, both experimental and theoretical research in the last
20 years have clearly demonstrated that turbulent motion is in no case limited to
fluids. It can exist in systems of different physical nature where oscillations occur,
for example in mechanical vibrations, electronic circuits, chemical reactions,
neurones, ecological systems, celestial mechanics, and so on.

An interpretation of experimental observations is closely coupled with the
fast-developing theory of nonlinear dynamical systems. A typical mathematical
model of an evolution process is in the form of a differential equation

d—xz v(x, a), x € R" (1.1)
dt

where the real variable t denotes time and a is a parameter. A state of the system
(1.1) at a given time is determined by a point x in the state space R". Evolution
of the variable x in time is given by a solution of Eq. (1.1). A discrete time
evolution process can be described by a difference equation

X =f(x,a), xeR" (1.2)

where the time, denoted by k, is discrete. The solution of Eq. (1.2) is given by
repeated iterations of the mapping f.

Actual states of the above systems are described by the vector variable x
consisting of n independent components. However, the state variable is spatially
distributed in the fluid flow as well as in a number of other systems. The state
space then has an infinite dimension and the mathematical model is then formed
by a system of partial differential equations. Evolution processes described by
integro-differential equations and differential equations with a time delay also
have infinite-dimensional state spaces.
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If the evolution equations in the form of Eqs (1,1) and (1.2) are linear, then
their solutions may be expressed in an explicit way and the evolution dynamics
is relatively simple. It has become evident in the course of the last 20 years that
even very simple but nonlinear equations can possess solutions, which from the
statistical point of view look like random ones, although they are generated by
a deterministic system. This behaviour is now called deterministic chaos and is
generally believed to represent a valid model of low-dimensional turbulent
behaviour in systems of various physical nature!-°,

The onset of chaos can be studied by observing asymptotic solutions of (1.1)
or (1.2) in dependence on the varying parameter a. An originally simple dynamic
regime, represented, for example, by periodic oscillations, becomes more com-
plex and finally leads to chaotic behaviour. In fact, a few degrees of freedom
suffice to generate chaos and low-dimensional systems of the form of Eq. (1.1)
and (1.2) are often used to study the onset of chaos. There exist several typical
ways (routes) of transition to chaos''; the best known is the period-doubling
route!!®, Further evolution of chaos may lead to an increased complexity of the
chaotic motions as, for example, in hydrodynamical turbulence. On the other
hand, fully developed turbulence in fluids'*! is a phenomenon too complex to be
described by equations of the type (1.1) or (1.2) and its complete description is
still an open problem. Thus the theory in its present state relates to the onset of
turbulence and to the weak turbulence occurring in low-dimensional systems'-62,
Nevertheless, the theory of dynamical systems in infinite-dimensional state
spaces''% as well as the theory of cellular automata'%® which are relevant to the
problem of fully developed turbulence become more and more promising with
a view of their applicability.

Here we shall study systems which dissipate energy; they are kept far from the
thermodynamic equilibrium by an exchange of mass and/or energy with the
environment. Mathematical models of dissipative systems possess the important
property of the contraction of volumes in the state space.

Let A be a bounded set in the state space R" and V be its volume. The set A
is generally deformed under the time evolution according to Egs (1.1) or (1.2).
The time evolution of the volume V of set A is in the continuous time case given

according to Liouville’s theorem'*® as

dL(t) = J div »(x(¢)) dx ; (1.3)
dt A(t)

if the time is discrete we have similarly

Vs = j det <5f ("k)) ix
Ax ox




The global contraction of subsets of the state space will be guaranteed if
div v (x) < 0 or |det f/ox| < 1, respectively, for all x. Asymptotic motions
will then occur on sets which have zero volume. If such asymptotic sets satisfy
certain stability conditions, for example a stability against small bounded ran-
dom perturbations, they are called attractors. Most of the points which are close
to an attractor tend to it as time becomes large.

The structure of an attractor and of its dynamics can be simple, for example
a point in the state space of continuous time systems corresponds to stationary
behaviour and a closed curve to periodic oscillations. However, an overall
contraction of volumes does not exclude complicated dynamics. The set A may
be expanding in some directions in the state space even if its volume vanishes
asymptotically. This may cause folding of different parts of A upon itself under
time evolution and the asymptotic set may then have a very complicated geome-
tric structure as well as complicated dynamics. In the case of a chaotic attractor,
a locally exponential expansion of nearby points on the attractor is required.

In general dissipative systems need not contract all volumes in the state space;
some sets may exist which expand their volumes with time, but such sets do not
contain attractors. There is a special class of mathematical models characterized
by the preservation of volumes under time evolution. Such systems are called
conservative and are well known, for example from classical mechanics!> 13;
they may also generate chaos but the phenomenon of attraction is lacking. Here
we shall concentrate on dissipative systems.

One of the simplest discrete time systems which possesses a chaotic attractor
is the following system of difference equations, studied first by M. Hénon'**

X1 = ilXp Y a) =1 — axy + Yy »
Y1 = fo(xps ¥ b) = bx, . (1.3)

where a, b are parameters.

The Jacobian of the mapping f = (f;, f,) in (1.5)is det (9f/ox) = —b .
Hence the system is dissipative if |b| < 1 and all areas of the state space R?
are contracted uniformly. Numerical computations show that Eqs (1.5) have
for many values of the parameters a and b solutions which tend asymptotically
to an attractor with complicated dynamics. This attractor also has a very
complex geometric structure, as illustrated in Fig. 1.1 (a) and (b). The structure
does not disappear upon magnification and is repeated on arbitrarily small
scales. Such sets are called fractals and are characterized by a noninteger
dimension'*®. However, the most important feature of the Hénon attractor is
the existence of a chaotic dynamics; subsequent iterations of (1.5) fill up the
attractor randomly. This randomness appears to be equivalent to that of
tossing a coin '!? and is caused mainly by the exponential divergence of nearby
points on the attractor.
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Another classical example of a chaotic attractor is the Lorenz attractor,
arising in a continuous time system of three nonlinear ordinary differential
equations (ODEs), studied first by E. N. Lorenz'*%. The severe truncation of the
set of partial differential equations describing thermal convection in the atmo-
sphere leads to the following set of ODEs

dx
— = —o0x + oy,

dt

os | Y

03
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0.15 '\. L

0.55 0.60 0.65 0.70

Fig. 1.1. Several thousands of iterates of Eqs (1.5) for a = 1.4, b = 0.3 plotted after
ignoring several hundreds of initial iterations. (a) Entire attractor is covered by a single
solution. (b) The magnified part of the attractor reveals a complex internal structure.




dy

Loz -y, |
" X2+ rx—y,. (1.6)
dz

e — bz,

i xy — bz

where o, r, b are positive real-valued parameters. The state space of Eqs (1.6) is
three-dimensional. The divergence of the vector field on the right hand sides of
Egs (1.6)is divo(x) = —o — 1 — b and thus, as in the Hénon system, the flow
of Eqgs (1.6) uniformly contracts the volumes of the state space.

gy S =
"n‘

XN
N
“,

Al\

/

Fig. 1.2. The Lorenz attractor. The solution starting at x = y = z = 0 forms irregular-

ly alternating loops to the left and to the right and quickly approaches the chaotic
Lorenz attractor.

Despite its simplicity, the model yields chaotic oscillations at many parameter
values, for example at ¢ = 10, b = 8/3, r = 28, see Fig. 1.2. Again this
attractor has complex geometric structure as well as chaotic dynamics.

These two examples indicate the lowest possible dimension of the state space
of a chaotic system. In the discrete time case given by Eq. (1.2), with f an
invertible mapping, the dimension must be at least two, while the continuous time
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system (1.1) must have at least three-dimensional state space. If we consider a
noninvertible mapping f in Eq. (1.2) then even a one-dimensional state space will
admit the existence of chaos.

An example of an infinite-dimensional system may be provided by the
Mackey—Glass mathematical model of haematologic disorders'*> 117 formed by
a differential equation with a time delay

dx(t)
= Ax(t — 1)) — »x(1), (1.7)
dr
where
ax(t — 1)
Ax(t — 7)) =
L+ (x(t — 7))
I 11 ]
(a) ()

() (d)

Fig. 1.3. The evolution of chaos generated by Eq. (1.7) for « = 0.2, # = 10, y = 0.1
and different values of the time delay t. The figures represent a plot of x(t) against

x(t — t): (a) periodic attractor, t = 14; (b) chaotic attractor, t = 17; (¢) chaotic
attractor, t = 23; (d) chaotic attractor, t = 300.



Here x(t) is the concentration of blood cells at time . Cells are lost from the
circulation at a rate y and the flux 4 of cells into the circulation from the stem
cell compartment depends on x at a delayed time (¢t — 7). Hence, the time
derivative of x at time ¢ is dependent both on the actual state x(t) and on the
delayed state x(t — 7). To generate a solution of Eq. (1.7) we have to know
all states in the time interval [t — 7, t]. The evolution of asymptotic regimes
from periodic to chaotic attractors is shown in Fig. 1.3 (a)-(d). The onset of
chaos is here accompanied by a sequence of periodic oscillations with a suc-
cessively doubled period.

The existence of complex solutions of a system of ODEs was already known
to H. Poincaré at the end of the last century'>’. Similar systems were later
studied by Birkhoff'> and in the 1940s by Littlewood and Cartwright'!'. The
theory of chaos was developed during the 1960s for conservative systems (Kol-
mogorov-Arnold-Moser theorem'-?) and for special types of dissipative systems
(Smalel'sg). First demonstrations of chaos in numerical solutions of the systems
of the type (1.1) and (1.2) appeared at the same time'*> 144 At the beginning of
the 1970s Ruelle and Takens'>® expressed an idea about the possibility of the
description of turbulence by chaotic solutions (strange attractors). The term
‘chaos’ was first used by Li and Yorke'**.

Then there was a large increase in the number of studies on chaos. A number
of review articles, conference proceedings, reprint collections and several mono-
graphs on the subject of chaos have appeared in the last several years. A list of
some of them is provided in the literature references to this chapter.
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2

Differential equations,
maps and asymptotic behaviour

2.1 Time evolution and dynamical systems

Physical, chemical, biological or social phenomena can be seen as systems
characterized by a time evolution of their properties. Such evolution systems are
ubiquitous in nature. Often we are able to express the rate of change of the
properties of a considered evolution system in the form of equations, applying
and combining the relevant laws of nature. Solutions of the constructed mat-
hematical model then mimic the time evolution of the real system.

Our aim is to predict this evolution using a proper mathematical model. An
instantaneous state of the model system can be given by a finite set of numbers
or by a finite set of functions. A set of all states of the system will be called a
state space (in physics literature it is also called a phase space). A system will be
considered as deterministic if its future and past are fully determined by its
current state. In a semideterministic system only the future is uniquely deter-
mined, while in a stochastic system neither the past nor the future is unique (this
type of system will not be treated here).

A system of bodies moving according to laws of classical mechanics, electronic
circuits or interacting populations in a closed ecological system may be con-
sidered as deterministic systems. An isothermal chemical reaction in an ideally
stirred (homogeneous) environment is another example of a deterministic sys-
tem, while the consideration of molecular diffusion makes the system semi-
deterministic.

A substantial difference between the last two examples of evolution systems
is in the dimension of the corresponding state space. Let X denote the state space
and x its elements (states of the system). The state of the system is, in the first
case, described at a given time by n values of concentrations x,, ..., x, of
components taking part in n independent reaction steps. Hence x is an n-vector
with the state space defined on a subset of n-dimensional Euclidean space R". In
the second case, the concentration of each of the n reaction components is
dependent on the spatial coordinates and also has to satisfy conditions imposed
on the boundaries of the system. The corresponding state space consists of
elements formed by n-tuples of concentration profiles satisfying the boundary
conditions. As each element can be generally described by an infinite number of



