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ABSTRACT

In this paper we study the trace ring of m generic 2 by 2 matrices Ty, 2.It is shown
that it is a polynomial ring over the generic Clifford algebra for m-ary quadratic forms of
rank < 3. We prove that it is a Cohen-Macaulay module,i.e. it is a free module of finite
rank over a polynomial subring of the center.This explains the existence of a functional

equation for its Poincaré series.
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INTRODUCTION

Throughout these notes, F will be a field of characteristic zero, algebraically closed if
necessary.IF,, = F < z;,---,z,, > will be the free F-algebra in m variables, i.e. [Fy, is

the tensor algebra of a vector space of dimension m over F.

If I is the ideal of IF,, of all identities satisfied by n by n matrices in m variables, then
@m.n=F< T,y ZTm > /Im.n

is the ring of m generic n by n matrices.

A more convenient description of this ring is obtained as follows. Let P, , be the commu-

tative polynomial ring
Pon=Flegll) |1 6 Em1 L1 <]
and consider the so called generic matrices
Xi = (2i;(1))i,5 € Ma(Pm,n)
then G,, , is the F-subalgebra of M, (P ) generated by the elements { X, ..., X;n }.

It is well known, see for example [P1,Ch.4], that &,,, ,, is a domain and if we localize it at
the multiplicative set of all nonzero central elements we obtain a division ring A, » which

is of dimension n?

over its center Ky, n. Let Tr: Ay, , — K n be the usual (reduced) trace
morphism, then the trace ring of m generic n by n matrices, T,, ,, is the F-subalgebra of

A, n generated by @, , and Tr(G,,,,).There are two main motivations to study them :

Received by the editors February 1985. This work is supported by an NFWO/FNRS-grant

(Belgium).



2 LIEVEN LE BRUYN

a. Representation theory.

We assume that F' is algebraically closed,for arbitrary fields similar results hold,see for
example [AS]. An n-dimensional representation of the free algebra IF,, is an algebra mor-
phism

¢ :IF,, > M,(F)
Note that this is equivalent to giving m elements ¢(z,), -, ¢(z,m) of M, (F). Therefore,

the set of all n-dimensional representations of IF,, can be identified to the affine variety

. . 2
associated to P, , i.e. A™" .

Two n-dimensional representations ¢; and ¢- are said to be equivalent if they differ only

up to an F-automorphism of M,,(F)

Frn — My(F)
l l

F,, — M,(F)
Therefore, Autp(M,(F)) = PGL,(F) acts on REP,(IF,,) = A™"” and the orbits under

this action are the equivalence classes of representations. To classify representations up to

equivalence is thus the study of the orbit space of A™"" under the action of PGL,(F).

If ¢ : [F, = M,(F) is a representation then F* = F @ --- @ F (n times) becomes an
IF,,-module via ¢.If F™ is completely reducible as a IF,,-module, then ¢ is said to be

semi-simple.In general we can find a decomposition series
o=V,c---cVycVy,=F"

for F™ as a IF,,-module. Then W = &(V;/V;,) is completely reducible and dimp(W) = n.
Choose a basis for W as follows : the first dimp(V;—,)-vectors form a basis for V;_;, the
next dimp(Vy—2/Vi—1)-vectors form a basis for V;_5/V;_; and so on.With respect to this

basis, ¢ will have the matrix-form
b1+
¢ = 0~ :
e i

where ¢; : IF,, — M, (F), for n; = dimp(V;-1/V;), are the irreducible components of ¢.

In particular ¢; is epimorphic, n = n; + -+ + ny and N is the nilradical of ¢. With ¢ we
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can therefore associate a semi-simple representation
¢“ =¢1@"'@¢t

Artin has proved in [Ar| that ¢** lies in the closure of the orbit of ¢ under action of
PGL,(F), i.e. we are not able in any type of quotient variety of Amn? by PGL,(F) to

distinguish between ¢ and ¢°°.

This motivates us to construct an affine variety whose F-points are in one-to-one correspon-
dence with the equivalence classes of semi-simple n-dimensional representations of IF,,.Let
V be the variety corresponding to the center of T, ,,,R,n.n, which is an affine algebra by
a result of Procesi’s [P3,Th.3.3|.Then the natural inclusion R,, , C Ppn,n induces a map

between the varieties

p: A™ LV
which is onto and p(¢) = p(¢) if and only if ¢** = )**. Therefore
THEOREM 0.1 (Artin-Procesi)

The points of V = AFF(R,, ) are in one-to-one correspondence with the equivalence

classes of semi-simple n-dimensional representations of IF,,.

The trace ring T, , itself is also affine, so we can associate to it the set ¥ =
AFF(T,, ) consisting of all maximal twosided ideals equipped with the usual induced

Zariski topology. Since T,, , is integral over R,, ,,,we have a surjection
§:Y -V

It is easy to describe the fibers of this map. Let ¢ be an F-point in V,ie. ¢ corresponds

to an equivalence class of a semi-simple representation

$=010 O ¢

then §~1(¢) consists of maximal ideals of T\, , corresponding to distinct irreducible com-

ponents of ¢.
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THEOREM 0.2 (Artin-Schelter,[AS,Th.3.20])
The points of Y = AFF(T,, ,) corresponds to couples (¢, $;) where ¢ is a represen-
tant of an equivalence class of a semi-simple n-dimensional representation of IF,, and ¢;

is an irreducible component of ¢.

Further, one can verify that the dimension of V', which is equal to the Krull dimension

of the affine F-algebra R, , is (m — 1).n?% + 1.

b. Invariant theory of n by n matrices.

In the foregoing paragraph we have seen that there is an action of GL,(F), actually
of PGL,(F) on P, . This action is defined in the following way : if P € GL,(F) and if

X, is the [-th generic matrix,then
PX,.P ! = (i (1))is

where the ;;(!) are F-linear combinations of the z;;(l). Then,sending z;;(l) to ¥;;(!)

induces an F-automorphism on P, ,, which we denote by ap.

A polynomial f(z;;(l)) € Pm.n is said to be an invariant of m copies of n by n matrices iff
ap(f) = f for all P € GL,(F). The set of all invariants is called the ring of invariants of

m copies of n by n matrices.

Artin [Ar] conjectured that any invariant is an element of R,, ,. For n = 2, this fact was
proved as far back as 1903 by J.H. Grace and A. Young [GY]. For arbitrary n, Artins conjec-
ture was proved independently by Gurevich [Gu|,Siberskii [Si] and Procesi [P3,Th.1.3].The
proof of this result relies heavily on the so called ”first fundamental theorem” on vector
invariants [Gu,Th.16.2] which gives a generating set for the invariants of m vectors and m

covectors, i.e. invariants of GL,(F) acting on the symmetric algebra of
(ver) @ (v*)em

where V is an n-dimensional F-vector space and V* is its dual. This theorem is quite old

but the first complete proof seems to be that of Gurevich.The solution of Artins conjecture
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is a translation of the first fundamental theorem,using the dictionary

VeV* = M,(F)

vector invariant = trace

for details see [P3,pp 310-313].

THEOREM 0.3 (Gurevich-Siberskii-Procesi)
The ring of invariants of m copies of n by n matrices under action of GL,(F) is equal

to: Ren.vs

We will now define an action of GL,(F) on M, (Ppn,n). Let P € GL,(F) and (as;);,; €

My (Rm,n) then there is an action by conjugation
(aiz)i s — P.(a.-_,-),-'j.P—l

and an action extending ap
(aiz)i; = (@p(ais))is

If we regard M,,(Pm.n) 2as M, (F)® Pyn,n then the first action is on the first factor,fixing the
second, whereas the second action is vice-versa,thus the two actions commute.Note that

the two actions agree on the generic matrices.Define
.BP . Mn.(Pm.n.) - Mn(Pm,n)

sending a matrix (ai;)i,; to P~'.(ap(aij))i,;.P. This defines an action of GL,(F) on
M, (Pm.n). The ring of matrix-concomitants is by definition the fixed ring under this

action.

THEOREM 0.4 (Procesi)
The ring of matrix-concomitants is equal to the trace ring of m generic n by n

matrices, Ty, ,.
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Apart from these general results, allmost nothing is known on the ringtheoretical
structure of R, , and T,, . In fact, the only trace ring for which an explicit description

exists in the literature is T 2,see [He] or [FH].We will recall their result.
Working with 2 by 2 matrices, one basicly uses only two identities
A% —Tr(A).A+D(A)=0 (1)
A.B+ B.A=Tr(A.B)—Tr(A).Tr(B)+ Tr(A).B+ Tr(B).A (2)
Consider the F-subalgebra R of A, ; generated by the elements
{Tr(X1), Tr(X2), D(X1),D(X2), Tr(X,:.X2)}

Using the identities given above, one can verify that the F-subalgebra R{X, X5} of A2

is a finite module over R generated by the elements
{1, X1, X2, X;. X2} (*)

Because

@22 C R{X1, X2} C Az

we get that Kdim(R) = trdegp(K2,2) = 5.Therefore, the generating elements of R are

algebraically independent,i.e. R is the polynomial ring
F[TY(XI), T?'(Xg), D(Xl), D(Xg), TT(X1X2)]

Further, since G2 2 C R{X;, X2} € T2 and Tr(R{X,, X2}) € R{X,, X2} we get that
T2 = R{X1, X2}. Let K be the field of fractions of R,then the K-dimension of A, 7 is

smaller or equal to 4 since K{X;, X2} has (x) as a generating set. On the other hand
dimg (Az2) = dimg, ,(A22).dimk (Kz2) = 4.dimg (K2,2)

so K = K22 and the set () is linearly independent. This finishes the proof of

THEOREM 0.5 (Procesi,Formanek-Halpin-Li)
(a) H 22‘2 = F[TT(XI),TT(XQ), D(Xl), D(Xg),TT(X1X2)]
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(b) : 22 =R22.1® R22.X1 ® R22.X2® R22.X1.X2

Surprisingly,a similar result for T'3 » does not exists in the literature, apart from a
description of R3 2 in [Fo,Th.22]. Nevertheless, in [LV] it is shown that one can describe

R3,2 and T3 2 using the same methods as above.

Consider the F-subalgebra R of Ao, the generic division algebra of 3 generic 2 by 2

matrices, generated by the elements
{TT(XI), TT(XQ), Tr(X3), D(Xl), D(Xg), D(X3), TT(X;XQ), Tf(X2X3), TT(X1X3)}

Using the identities (1) and (2) above, one verifies that the F-subalgebra of Aj,,

R{X;, X2, X5} is a finite module over R generated by the elements
() = {1, X1, X2, X3, X1 X2, X2 X3, X; X3, X, X2 X3}

Since G332 C R{X,, X2, X3} C Agj2, we get that Kdim(R) = trdegr(Z(As2)) = 9.
Therefore, the generating elements of R are algebraically independent,i.e. R is the poly-

nomial ring
F[TT(XI), TT(Xg), TT‘(X;;), D(Xl), D(Xz), D(X3), Tr(X1X2), TT(X2X3), TT(Xng)l

Further, @3_2 C R{XI,XQ, Xg} C ’11‘3'2 and TT(R{Xl, Xg,Xg}) G R{Xl, X5, X3} This
entails that T3 2 = R{X,, X2, X3}. Now, let K be the field of fractions of R, then

d’imK(A3_2) = dme(K{Xl, Xg, X3}) S 8

because K{X;, Xz, X3} has generating set (*).Further, dimg(Z(As2)) > 2 because
Tr(X1X2X3) ¢ K. For otherwise, because Tr(X; X2X3) is linear in each of the generic

matrices this would entail that Tr(X; X2X3) can be written as
aTT(Xl)TT(Xg)TT(Xg) + ﬂ(TT(Xl)TT(XQX:;) + TT(X2)TT(X1X3) 5 TT(X;;)TT(X1X2))

and by specializing

0 1 0 0 1 0
i=(00) m=(1 ) =0 5)
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one obtains a contradiction.Combining all this,we get that
8 < dimg (K3,2).dimk, ,(As2) = dimg(A3z2) < 8
i.e. the set (*) is linearly independent over K or R. Taking traces in the identity
(X1 X2X3)? — Tr(X, X2X3) X, X2 X3 + D(X,)D(X2)D(X3) =0
and simplifying the first term we get that T'r(X; X2 X3) satisfies the quadratic equation
X?-AX+B=0 (%%)

where

A=Tr(X,)Tr(X2X3) + Tr(X2)Tr(X,X3)+
Tr(X3)Tr(X, Xz) — Tr(X,)Tr(X2)Tr(Xs5)

B = D(X1)Tr(X2X3)? + D(X2)Tr(X1 Xs)? + D(X3)Tr(X, X2)?
—Tr(Xy)Tr(X2)Tr(X1 X2) D(Xs) — Tr(X1)Tr(Xs)Tr(X, Xs) D(Xz)
—TPr{ X ) Pr{ Xa)Tr( X5 Xs) D(X:)

+Tr(X1)2D(X2) D(X3) + Tr(X2)2D(X1)D(X3) + Tr(Xs)2D(X,) D(Xz)

4, DX DI X} D(Xa) + Tr{X 36T (X X5 Tr( X X5)

THEOREM 0.6 : If R is the polynomial ring
F[T"'(Xl), TT'(XQ), TT(X;;), D(Xl), D(Xg), D(X3), TT(X1 Xg), TT(X2X3), TT(X3X1)]

(1) : R,z is the free R-module of rank 2 generated by {1, Tr(X; X2X3)} and Tr(X; X2X3)
satisfies the quadratic equation (*#) over R.

(2) : T3 2 is the free R-module of rank 8 generated by {1, X, X2, X3, X; X2, X1 X3, X2 X3,
X1 X2 X3}

Being free over a polynomial subring of the center, T3 2 is a reflexive module over
R3.2.Further, we claim that the localization of T '3 2 at a central height one prime ideal

1s an Azumaya algebra For, such a prime p cannot contain simultaneously the elements
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(X1 X2—X2X1)?,(X1 X3~ X3X1)? and (X2 X5 — X3X3)? belonging to the Formanek center,
whence (T 3,2),, is a localization of an Azumaya algebra.This proves that '3 2 is a reflexive
Azumaya algebra and entails that T3 2 cannot be a free module over R 3 2 since this would
imply that T '3 2 is an Azumaya algebra ,but dividing out the commutator ideal one finds

a commutative epimorphic image.

For m generic 2 by 2 matrices one would similarly like to consider the F-subalgebra R
of A, 2 generated by the elements Tr(X;), D(X;), Tr(X;X;). But, for m > 4, R can
never be a polynomial ring since the number of generators is 2m + (r;z) whereas the
Kdim(R) = 4m — 3. Therefore, a similar approach fails for m > 4. Nevertheless, one can

ask whether a similar structural result holds

QUESTION : Is the trace ring of m generic 2 by 2 matrices a free module of finite

rank over a polynomial subring of its center 7

Because Ty, 2 is the fixed F-algebra under action of the reductive linear algebraic
group GL2(F) on an F-algebra of finite global dimension M2(Py,, 2), this question could be
answered affirmatively, provided one has a noncommutative version of the famous Hochster-
Roberts theorem,cfr. III.2. At present, it is not clear how one might prove such a result
since the main tool of the commutative proof, i.e. reduction to finite characteristic énd
investigation of the Frobenius morphism on local cohomology, clearly does not generalize

(directly) to the noncommutative setting.

Therefore, we had to find another approach. In the first chapter we recall some basic results
on the invariant theory of the (special) orthogonal groups. We give an explicit proof of an
observation due to C.Procesi that the center R,, 2 of the trace ring is a polynomial ring
over the ring of invariants R?, of the special orthogonal group SO3(F). This enables us
to give another proof of the fact that R,, 2 is the ring of invariants of m copies of 2 by 2
matrices under componentswise action of GL2(F). Similarly, the trace ring Ty, 2 is the

polyncmial ring

T = T [Tr(X1), -, Tr(Xom)]
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where T, is the F-subalgebra of T ,, > generated by the generic trace zero matrices
. 1
Xi = X,’ - -Z—TT(X.)

Further, we recall Procesi’s description of R2, and T, using standard Young tableaux.

Using these results, we have reduced our question to the corresponding question for Ty, .
From the identity (2) above, we get that the generators of T}, satisfy the relation
X7 X7+ X7 X7 = Tr(X?X7)
This motivates us to construct and study the iterated Ore extension
Ap = Fla;;: 1 <1 < j < mla,][az, 02,62]...[@m) Om, 6m]

where o;(a;) = —a; and §;(a;) = 2a;; for all7 < j and trivial action on the other variables.

Then sending a; to X? and a;; to —;-Tr(X{'XJ’-’) we get an epimorphism
¢m : Arn - rn-‘:'n

It is possible to describe the kernel of this morphism in the following way. A,, turns out

to be the Clifford algebra over the commutative polynomial ring
Sm=Flaij:1<1< 7 <m]

where a;; = a? , i.e. the coordinate ring of the variety of all symmetric m by m matrices

over F, associated to the quadratic form
D aii X X;
1,7

For this reason, we christen A,, the generic Clifford algebra Cl,,. This observation com-
bined with the classical structure theory of Clifford algebras makes it possible to describe
the prime ideal structure of Cl,,. In particular we get that there is only one prime ideal of
Cly, lying over the ideal of S,, generated by all k by k minors of the (generic) symmetric

m by m matrix

A= (aiz)i;



