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Preface

The present lecture notes were prepared for a set of lectures which
were given at the 1971 Simla Summer School of Statistical Mechanics, organ-
ized by the Centre of Advanced Study in Theoretical Physics and Astrophysics
of the University of Delhi and the Centre for Postgraduate Studies of the
University of Himachal Pradesh. Because of lack of time not all the
material presented here was covered in my lectures. I want to stress that
some parts lean very heavily on the original papers given in the list of

references at the end of the notes.

Because tﬁese are lecture notes, the choice of material is highly
subjective and I have, for obvious reasons, covered those subjects in which
I myself have been or am interested. All the same, I hope that this
personal selection may prove to be of interest to other people, especially
as it contains some unpublished material as well as some material which is

not easily available.

I should like to express my thanks to the organizers of the Summer
School, and especially to Professor F.C. Auluck for inviting me to give

these lectures and for their generous hospitality.

Simla, Himachal Pradesh,
June 1971 D. ter Haar

vii



PREFACE

CHAPTER

[ S S
v o8 % 3 3
UL W+

CHAPTER

0NN NN DN
Lo B =2 G LI O WG g

N oo

CHAPTER

[ SN B¢ SR IV N
~_ O U N

CHAPTER

4,1
4.2

Contents

1. THE OCCUPATION NUMBER REPRESENTATION

Classical Petit Ensembles
Classical Grand Ensembles
Quantal Petit Ensembles

Quantal Grand Ensembles
Occupation-number Representation

2. THE GREEN FUNCTION METHOD IN STATISTICAL
MECHANICS

The Double-time Temperature-dependent Green Functions
Simple Applications

The Heisenberg Ferromagnet

Ferromagnetic Resonance

Antiferromagnetics

The Paramagnetic Phase of a Heisenberg Ferromagnet
Lines' Approach to Green Function Decoupling

3. THE PAIR HAMILTONIAN MODEL OF AN
IMPERFECT BOSE GAS

Introduction

A Green Function Solution of the Problem

Proof of the Asymptotic Exactness of the Solution

The Condition for Bose-Einstein Condensation

A Graphical Solution of the Problem

Luban's Solution of the Pair Hamiltonian Model

An Exact Solution of the Pair Hamiltonian Model
References

Appendix - The Bogolyubov Hamiltonian and Transformation

4. FLUCTUATIONS IN A PERFECT BOSE GAS

The Use of Gentile Statistics
Symmetry Breaking in the Ground State of a Bose Gas

Page

vii

[ L N o B

12
16
21
24
26
34

37

37
38
42
45

50
51
55
55

57

57
64



CONTENTS

CHAPTER 5. THE EQUATION OF STATE OF AN
IMPERFECT GAS

Hard-sphere Gas with Attractive Forces .

.1 A
.2 A One-Dimensional Model of a van der Waals Gas

ot ot

CHAPTER 6. A SIMPLE DERIVATION OF THE BLOCH
EQUATION

CHAPTER 7. STATISTICAL MECHANICS OF STELLAR SYSTEMS

Introduction

The Relaxation Time of Stellar Systems
Landau Damping

Lynden-Bell Statistics

Gravitational Polarization

PO IPS IS IS
(S N A I

CHAPTER 8. APPROACH TO EQUILIBRIUM

8.1 A Simple Model
8.2 Linear Response Theory

REFERENCES

INDEX

OTHER TITLES IN THE SERIES

vi

Page
71

71
80

91

97

97
99
103
105
107

111

111
114
119

123

124



CHAPTER 1
The Occupation Number Representation

Let us first of all note that although statistical mechanics deals with 'large'
systems of interacting particles, whereas field theory deals with particles
and guantized fields or with interacting fields, in the second quantization
formalism these problems become very similar. This has led to the introduc-

tion of diagram techniques in statistical mechanics hoth at zero and at non-

zero temperatures.

Let us also note the need to use representative ensembles because of our res-
tricted knowledge about the actual physical systems we are dealing with. Bear-
ing in mind that the total number of particles in the system is also not known
accurately, we are led to the use of grand ensembles. We shall start the
introduction with a recapitulatioa of some relevant formulae from ensemble

theory.

1.1 Classical Petit Ensembles
If we consider azn ensemble of N systems consisting of N identical

(i) (i) )

atoms (or molecules), if Py TaeeesPg Ty 4 ,...,qsi) are the generalized
1 N 1 M
Eh ( )v 9Cl£ )1 pl( ) Pg );

atom, if D(q1
t)dQ is the number of systems in the ensemble with a representative point,

momenta and coordinates of the 1 W w yeesy

1 1 .

qf ),...,qu), pf ),...,pgN), within a volume element d{} of phase space or
I-space, where

TT TT a) a®

dQ: dp, dq 3

i=1 j=1 J
and if we introduce the ensemble density © = D/N, one can show that when we
consider an ensemble representing a system in thermodynamic equilibrium at an

absolute temperature T, £ is given by the equation

p=ePli-¢) (1.1)
where | is a function of £, where
L
= kBT
(kB: Boltzmann's constant), and where € is the energy of the system as func-

tion of the p's and q's, that is, the Hamiltonian :
e = (p,q). (1.3)

1



2 SELECTED TOPICS IN STATISTICAL MECHANICS
From the definition of p it follows:that it must be normalized

Ipdn =1 ) (1;4)
where the integration is over the whole of I-space. From (1.1) and (1.4) it
follows that | must satisfy the equation

PV _ J e P an i (1.5)
and one shows by standard methods that | is the Helmholtz free energy F,

apart possibly from an additive multiple of g, To fix this constant and .

ensure the proper transition from quantal formulae we can write

-BF 1 -Be a0 _ (N
e = F e h—sﬁ = Z-% ), (1.8)
where h is Planck's constant. The function Z%N)is called the partition

function.

Once we know | (or Z%-\N)) we can by differentiation find the average values

of varfous phase functions, for which we have the general formula

g(pia) = [gpan. (1.7)
For instance, we have 3B Y
€= 3B (1-8)
which is the Gibbs-Helmholtz equation, and for the pressure P
oy
P=- 5y (1.9)

where V is the volume.

If we are dealing with point particles, so that s=3, the kinetic energy part
of € is simply Z: pf/&n, and the integration over the momenta is straight-

" forward and leads to

) _ N :
Y/ I" = QN/vO ’ (1’10)
where
Bh2\é
- (D @)

which is essentially the cube of the thermal de Broglie wavelength, that is,
the de Broglie wavelength of a particle moving with a kinetic energy equal to

kBT , and where QN is the so-called configurational partition function,

—_— V) '11T a%, (1.12)

where U(ri) is the total potential energy of the system.
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1.2 Classical Grand Ensembles

We now consider an ensemble, the systems of which do not necessarily all
contain N particles. If D(p§1),...,p£N . qil),...,qu) s t)dQ is the number
of systems in the ensemble containing N particles and with their representa-
tive points within dQN, and if again P = D/N , we now find that for an ensem-
ble representing a system in thermodynamic equilibrium and able to exchange

particles with its surroundings, £ is given by

p:%!—e'Q+aN_E€ , (1.13)

where P and ¢ have the same meaning as in (1.1), where & can be shown to be
the partial Helmholtz free energy multiplied by B, and where the grand poten-
tial - or g-potential —, which because of the normalization of p satisfies
the equation i -
el = . % eaNj e atry (1.14)
can be sh-wn to be equal to PPV in the case of a homogeneous system. We

note in passing that we can write (1.14) in the form

=Y N Z%N) ) (1.15)

Ly
N

The grand-ensemble averages (g) of phase functions are now given by the

formula
-
@ =) [gpany, (1.16)
N
and many of them follow from q through differentiation. For example, we have
3 ;
(N) = a—'é , (1.17)
=}
(e) =- a—%, (1.18)
1 0ogq
P=3 oy (1.19)

If we are not dealing with stationary ensembles, such as the ones described by

(1.1) ana (1.13), the ensemble density p satisfies the following equation of

motion:
p= {H, £}, (1.20)
where the dot indicates a time derivative and the curly brackets a Poisson
bracket: .
o) = 2 0 50 77 | (. 2)
i,3L095 0 Bpyt eyt 2y
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1.3 Quantal Petit Ensembles

In quantum statistica mechanics the density matrix takes over the role
of the ensemble density. Its equation of motion is the quantal counterpart of

(1.20):

TS ‘
inp, = ;‘Hop,popj_ . (1.22)
where r ~
‘A B | =A B -B A (1.23)
Uop” opd- op op op op

is a commutator, and where we indicate operators by the subscript 'op' or by
a caret '~'
Averages of phase functions are double averages in the quantal case: once over
all the systems in an ensemble, and once for each system over the state of the
system. The density matrix, or statistical operator, is defined in such a way
that the average E' of a phase function g is now given by the equation
g = Tr pop Eop * (1.24)
A special example of (1.24) is the normalization condition
L =1. N
Ir A (1.25)
For an ensemble representating a system in thermodynamic equilibrium, (1.1) is
replaced by
r - ..
- TR 1.2
pop expLEz(\J HOP)J L] ( 6)
where HOp is the energy (Hamiltonian) operator, and where [ and | have the
same physical meaning as in (1.1). Equations (1.8) and (1.9) are again valid,

but (1.5) must be replaced by

-BY _ ‘
e = Tr exp(- BHﬁp) . (1.27)
1.4 Quantal Grand Ensembles
Instead of (1.13), we now have
Pop = exp(-q +aN0P-Bdop) i (1.28)

where q, 0., and f have the same meaning as kefore, and where Nop is the
number operator. Equation (1.25) again holds, and also (1.24) :

= 6] 1.29
<g> Tr 'Ongp ] ( )
but the trace involves summation over N - if we work in a representation in
which N is diagonal. Equations (1.17) to (1.19) remains the same, while

(1.14) is replaced b
y

q = —
el = Tr exp(CLNop BHOP) . (1.30)
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We must bear in mind that, if we work with systems of bosons (or fermions) the
complete orthonormal systems which we use to choose for our representation must

be properly symmetrised (or antisymmetrised).

1.5 Occupation-number Representation

It is often convenient to use a formalism which employs creation and
annihilation operators. This formalism we shall call the occupation-number
representation, although it is widely known as the second-quantisation repre-
sentation. This term, however, is a misnomer, as nowhere is there a further
introduction of the quantum of action; it derives from the fact that in this
formalism the wavefunctions bhecome operators. We shall use Dirac's bra and

ket notation as it is particularly suitable for our discussion.

For a system of N identical particles one can use as a complete orthonormal

set of basic functions the set
. 2 ; 1
11, 121--'v1N> = m L_ ePcpil(Pl)cpiz(Pz) LR CFIN(PN) ] (1'31)
P

where the‘q& form a complete orthonormal set of single—particle kets (we do
not need to and shall not specify the representation in which we are working),
where P,,P,,..., PN is a permutation of the N numbers 1,...,N, where p
is 1 for bosons, while for fermions & = +1 or -1 according as to whether
P 1is an even or odd permutation. The complete orthonormal ket set lil,..., iN>
is a set with the proper symmetry features. The bra set corresponding to the
ket set (1.31) is

LI . . 17 * * *
<11’ Logecey 1Nl =N L epcpil(Pl)cpiz(Pg) vee cPiN(PN) ) (1'32)
P
where ¢; is the conjugate complex of Qﬁ - or the Hermitean conjugate, if we

are dealing with particles described by spinors. The sets (1.31) and (1.32)
satisfy the orthonormality relation
L P Ns : 1 T . Y
L& % S igligisgse.s, 1N) = 5T %;3P6(11—1P1)... 6(1N—1PN) (1.33)
as well as a completeness or closure relation. We have assumed here that i
is a continuous parameter. If it is a discrete one, the Dirac & function must

be replaced by a Kronecker & function.
If |Y) is a wavefunction of the N-particle system with the correct symmetry

properties, we have

b = Joon Jaig e, aiglip, e, i) ,ees, ig|®) (1.34)
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Similarly, an operator Qop operating on N-particle functions in the Hilbert

space spanned by the set (1.31) will have the form

Qop S f— jdil,...,aiN dl’,....,dil\'rlil,...,iN)
(il,...,iN‘Qop\ii,...,i’)(ii,...,iﬁl ; (1.35)

Let us now consider systems in which the numbers of particles may have any
arbitrary value. That is, let us consider the Hilbert space which is the
direct product space of the Hilbert spaces corresponding to 0,1, ...,N, ...
particles. These latter Hilbert spaces are spanned by the sets (1.31) with
N=0,1,...,N,..., respectively, and the complete orthonormal set spanning

the product space will be the set
oy J8¥s g wtigdasmns By n Ennons digd gmany (1.36)

where lO) is the vacuum state in which there is no particle present.

We now introduce creation — or construction — operators which will produce a
ket corresponding to N particles from one corresponding to N-1 particles

in the following way

5+(i)|i1,...,1N>=\/§:1 |i,il,...,iN). (1.37)

From (1.37) it follows that all the lil""’ iN> can be obtained from the

vacuum state by the repeated action of creation operators:
lil,...,iN)_\/—_,a (i) 2% ),...,;+(1N)|0> . (1.38)

From the definitions (1.37) and (1.31) one can prove — and we leave the proof

to the reader — that the 3+(i) satisfy the (anti)commtation relations

‘_§+(i) ’ §+(j)]_ =0, for bosons ; (1.39&)
{_a*(i.) , §+(j)] =0, for fermions; (1.391)
+
where T -
|a sB | = A B _+B A (1.40)
op op- 4 op op op op

is an anticommutator.

Consider now the equations which are the adjoint of (1.37):

Gipgeenyigli(d) =WN+1 Gy, iyl (1.41)
where a(i) is the a‘gjoint of a'(i). From (1.41) it follows that
7 .
La( i), a(j) j =0, for hosons; (1.42a)
La(1) , ﬁ(j)_‘ =0, for fermions. (1.42p)
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To find out what a(i) does to a ket vector, we consider the matrix element
g owoees 11'\'1_1|'é(i)|11,..., iN) .

‘We have written N—-1 indices on the left and N indices on the right because

(i) equation (1.41) tells us that Q(i) operating from the right on an N-

particle function produces an (N +1)-particle function, and (ii) lil,..., iN)

is orthogonal onto ‘ii,..., ié/), if N #N’. From equations (1.41) and
(1.31) or (1.33) it follows that

aAfiy]s . 1 ie/. . . . .
(i;_,..., ié_l‘a(l)lll,..., 1N> =7 ‘L5(1—11)<1;,..., 1&_1\12,...,N>
+ B(i-ie)(ii,..., iﬁ_llil,ia,..., i) Heee+

(£ 5(1—iN)<i1,--.,iI&_1lil,...,iN_l)} (1.43)

As equation (1.43) must hold for any bra (ii,..., iIG_1l , Wwe have
SN . i S O O ; s . : y :
a(1)111,..., 1N> =\/_l\7 15(1—11)|12,..., 1N> x 6(1—12) |11, igyeees 1N>
N-2 ... . . . .
+o..+ (£1) 6(1—1N_1)‘11,..., inos 1N>

e E) s i) | i) (1.44)

N-1

In equations (1.43) and (1.44) the upper (lower) signs correspond to the boson
(fermion) case, From equation (1.44) we see that the a(i) are annihilation
operators. Provided the state i is represented in the ket |i1 goaey iN> ’
a(i) operating upon that ket produces another ket where that state has been
removed. In the case of bosons the state i may occur more than one, and

there may be more than one non-vanishing term on the right-hand side of (1.44).
From equations (1.44), (1.37), and (1.41) we find the (anti)commtation rela-

[aG), 8% () |
La(1) , 8" ()]

tions

8(i-j) , for bosons; (1.45a)

8(i-j) , for fermions. (1.45b)

il

Let us now consider (1.35) for the special case where Qop is of the form

N N
Q= Z‘1 o) %L Ezi(J?) , (1.46)
i= 1,)=

where the 6(11) are single-particle operators and the ’ﬁ(f]) are two-particle

operators. Moreover, let us assume that the 6(11) have all the same form and
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differ only in the particle on which they operate and that, mutatis mutandis,
the same is true for the A( ) (compare equations (1.49) below). From equa-
tion (1.35) and equation (1. 38) and its adjoint, we find, if we also use the
orthonormality and symmetry properties of the kets:

Q, = Jai di'(ilﬁ(l) liya*(i) a(i’)
+ %Idi ajai’aj’ (ij Iﬁ(2)|i’j'>§+(i)§+(j) a(j’ya@l’) . (1.47)

A case of particular interest, as it often is applicable, is the one where we
choose the cpi to be plane waves in a volume V , that is, where we use the

momentum eigenfunctions in the coordinate representation :

%%~ v 91(5{) ) (1.48)

where the k form a discrete set, if the volume V is finite. In that case

we write ak and ;k rather than a'(k) and a(k). Let in the coordinate

representation the Q(l) and Q( ) have the form

(1.49)

o) __B% g2y, @@
1 &ll 1 . lJ

= V(£1 - £J)

which corresponds to Qop being the Hamiltonian of a system of point particles
of mass m moving in a common potential U(r) and interacting solely through
binary forces governed by the interaction potential v(r -r. ) We now get

from equation (1,47)

ShA2 .. 1 T 14 10X stet s
p~ L 2m %V L. U(q) kq "N [ v(g) & Ui k! ik’ +q k -q (1.50)
‘ K t T ki
where ) ( )
U(q) = ‘I\ a’r e_l(g'z)U(z) v vig) = [ adre AT v(r) . (1.51)

We note in conclusion that the operators

: ALY Al .
nop(l) = a (1) a(l) . (1.52.)

the so-called occupation-number operators, will when operating upon a ket

\il,..., iN> reproduce this ket, multiplied by an integer which is equal to

the number of times i occurs amongst the numbers as follows

I, yeeey duey
from equation (1.44). One can thus also characteri:e the kgts il,..., iN>
by the numbers of particles which are in a given single-particle state:
ligseeesig) = InGig) s n(ig) veee Vs (1.53)
where now the JisJose.. are all different. In the case of bosons the n(j)

can take on any integral value, but in the case of fermions they must be 0 or

1. We shall not further develop the formalism using the n(j)-representation.



CHAPTER 2

The Green Function Method in Statistical
Mechanics

2.1 The Double-time Temperature-dependent Green Functions

There are many cases when we want to know the thermodynamic averages of
thermodynamic quantities and it is, therefore, of interest to have a formalism
which enables us to evaluate such averages — either exactly, or at least in
some more or less well-defined approximation. The Green function formalism,
which was first introduced by Bogolyubov and Tyablikov, is such a scheme, It
has turned out to be especially useful in the theory of magnetism, as we shall

see in these lectures.

Let Hop be the Hamiltonian of the system we are considering and let Nop be
the number operator for the particles in the system. If again

1
B=tF » (1.1)
i T

(k Boltzmann's constant, T: absolute temperature), we have for the grand

B:
ensemble average of any thermodynamic quantity A, the equation

[ »
T Ay exp | -8 (o - uN, ) |
Tr exp [—B (Hop - uNopil

where H is the partial-thermodynamic or chemical potential.

, (1.2)

Sometimes it is just as convenient to use a canonical ensemble as a grand
ensemhle. In that case, we have instead of equation (1.2)
Ir A, exp(- BHOP)

Tr exp(- BHop)

) = (1.3)

We now define in the usual way time-dependent operators. If we are using a

canonical ensemble, we use the normal Heisenberg representation :
Aop(t) = exp(i Hop t) Aop exp(-lﬁopt)' (1.4)

(we are using units in which h = 1). waever, if we are using a grand ensem-
ble, it is more convenient to generalize equation (1.4) and to define Aop(t)

through the equation
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_ . 14 - = /
Aop(t) = exp(lﬂop t) Aop exp( 1Hopt) , (1.5)
where
! = -
= Hop uNop . (1.6)

We can now define the double—time temperature-dependent Green functions through

the equation

1 3
A . ' R it/ ’ _ ’ \
« op(t) ; Bop(t )))a if(Ftxt )‘L(Aop(t) Bop(t ) T](Bop(t ) A()p(t))J
r (1.7)
where T is a parameter which we shall choose to be either +1 or -1, but
which we leave undetermined for the moment. The function 8 is the Heaviside

function

8(t)

0,4<0 ;
1,450 (1.8)

H

and the indices 'a' and 'r' indicate the advanced and retarded Green functions.

We shall not introduce here the causal Green functions.

We now want the equation of motion for the Green functions. We first of all
note that as the same operator Hé occurs in equations: (1.2) and (1.5) and
the same operator Hop in equation (1.3) and equation (1.4), and as the trace
of a product of operators is invariant under a cyclic permutation of the opera-
tors, the Green functions depend on t and ' only through the combination
t—t’. ©Let us denote differentiation with respect to t by a dot. We shall

use the relations

- A _ ’
1A0p = LAOP,HOPJ_ , (1.9)
i.Aop = LAOP, Hop |, (1.10)

according to vhether we are dealing with a grand or with a canonical ensemble,

and where

la b 1= (1.11)

, a b b a .
op’ op~F op op  op op
Moreover, we '.ave .
Bt-t") =-B8(t'~%) = 8(t-t") , (1.12)
where 8(t) isithe Dirac delta—function.” We thus find
; * "y _ ’ / ' 1_
4, (8B, (60 = 8= £ {8 (6) B () = 1B (67) Rop()
ra . '
+( LAop(t) ; Hop]_, Bop(t » o, (1.13)

or
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A, (8§ B (80 = 8(e- ) {, (8) B, () -nB, (8) A (8))]

+{ D\op(t) ; Hop]_ ; Bop(t')» . (1.14)

We note: (i) that the equation of motion is the same for the retarded as for
.the advanced Green function, and (ii) that in equations (1.13) and (1.14) more

complicated Green functions appear.

We now introduce the Fourier transform:of the Green functions by the equations

*

+ ® . ’
€a,,(8) 5B, (6 - [, B0 iE(-) (.83
€A 3By = % _Tf: €8, (6) 5B, (£7)7 A=) 54 gy, (1.16)

Dropping the index 'E' and only writing down the equations for the canonical
case, knowing that the grand-canonical case can be obtained by changing pr
to H;p, we can write equation (1.14) in the form

1
EKA, 3 By =55 A B -nB A D+ KIA LH D By - (1.17)

We must now discuss spectral representations. We define first of all the

correlation functions
ne ! ! /
FBA(t,t ) = <Bop(t )Aop(t)) ’ FAB(tat ) = (Aop(t) Bop(t )> ’ (1-18)

and note that the Green functions are linear combinations of FBA and EAB'

We now define a function J(w) by the equation

+ @

Foa(t,8") = [ a(w) iu(t-t) g (1.19)

-
From equations (1.18) and (1.3), and using 'a representation in which Hop- is

diagonal,

(vlﬂoplu> =8, B, (1.20)
we find after some straightforward calculations
1 'BEv
J(w) =3 2 <v|B°plu>(u|Aop|v> e b(w-E,+B) (1.21)
vy M
where
Z = Tr exp(- BHOP) . (1.22)
Similarly, if we write . ,
Fyp(tt’) = [ 37 (w) oiw(t-t’) 4 (1.23)

we find
J'(w) = I(w) Y . (1.24)



