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INTRODUCTION

For two functions f analytic in [z]| < R;, g analytic in |z| < R,

and represented by their power series expansions

8

(0.1) f£(z) = akzk, g(z) = ¥ bkzk ,
k=0 k=0
let f x g denote the function
p k
(0.2) (Fxg)(z) = ] apbz
Lo Kk

A simple calculation shows that f * g is analytic in |z| < R1R2. It is called
the Hadamard product of f and g in honor of J. Hadamard's famous theorem con-
cerning the location of singularities of f x g in terms of the singularities of

the "factors'. He used the alternative representation as a convolution integral:

(0.3) (f * 9)(2) = 5= f £(z/0)g(2)de/, |z|/R < p <R
&]=p

2

For this reason f » g 1is also called the convolution of f and g.

The constant theme in this book is to study properties of operators
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fx ¢« B+A,

where f 1is an element of the set A of functions analytic in the unit disc

U= {|z] <1} and Bc A. In particular, we try to characterize operators which
send a certain given B C A into itself. An important classical example of such
a result is the following (unit disc version of a) theorem due to Szegd [85] (a

corollary to the famous theorem of Grace [23]).

THEOREM 0.1: For n € N ZRet

£() = ) (}(‘]akzk, g(z) =
k=0 k

o3

n] k-~
b, z
0 (k k

be nonvanishing in U. Then

has the same property.

Note that it is possible to state Theorem 0.1 as a convolution theorem
characterizing functions which preserve the class of nonvanishing polynomials of
fixed degree. Other operators preserve the range, the univalence, geometric
properties of the image domains, certain norms,etc. A stimulating result in this
direction was Robertson's convolution theorem for typically real functions (i.e.,

functions f € A with f(0) = 0, £'(0) =1, Im f(z) » Imz = 0 in U).

THEOREM 0.2 [45]: T§

f(z) =

1o~ 8
o’
N

-

akzk, g(z) =
1 k

o~ 8

k 1
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are typically real, then

has the same property.

Since this theorem has many applications, among them a simple solution of
the coefficient problem for these functions, it was hoped that the class S of
normalized univalent functions in A or certain subclasses of S share this
invariance property {Mandelbrojt-Schiffer, P61ya-8choenberg). The attempts to
solve these problems produced a number of important general insights into proper-

ties of Hadamard products which are discussed in the following chapters.

The following notion turned out to be useful: let A0 consist of the

functions f € A with f£(0) = 1. Then for V c AO define the dual set
(0.4) V*={geA0]\/feu: (f x g)(z) # 0 in U} ,

and U** = (V*)*, the second dual. For instance, Theorem 0.1 has the equivalent

formulation
(0.5) {(1 + z)n}** = {P € AO I P polynomial of degree = n, P(z) # 0 in U} .

The '"duality principle'" states that under fairly weak conditions on V, many
linear (and other) extremal problems in U** are solved in (/. This is a useful
information since in many cases of interest U** 1is much larger than |/ (compare
(0.5)), and various classical theorems from different fields can be obtained by a

unified approach.

Most of the results in this book are no more than ten years old (a con-

siderable number of them have not even been published before) and many parts of
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the theory are still developing and have not yet found a final form. Although it
was impossible to include every result in the field, I have tried to give a fairly

complete survey of the available material.

These notes are an enlarged version of a series of lectures delivered at
the Séminaire de mathématiques supérieures, Université de Montréal, August 1981.
I should like to thank the organizers of this conference, Prof. Q.I. Rahman and
Prof. G. Sabidussi, for the opportunity to present this part of convolution

theory.

Wiurzburg, January 1982 St. Ruscheweyh



Chapter 1

DUALITY

1.1. The duality principle

We are using dual sets as defined in 0.4. With the topology of compact
convergence in U the space A 1is a locally convex separated topological vector
space. The space A of continuous linear functionals on A 1is described in the

following basic theorem of Toeplitz [88].

THEOREM A: A € A A4 and only 4if there is a function g analytic in

|z] =1 such that fon £ € A

(1.1) A(E) = (g » £)(1)

The correspondence (1.1) is denoted by A = g. A subset U c AO is said

to be complete if it has the following property:

(1.2) feVv—=—1V|x] =1: f €v.

Here we used the notation fx(z) = f(xz), z € U. Note that any dual set is com-

plete (and closed).

THEOREM 1.1 (Duality principle, [50]): Let V c AO be compact and com-

plete. Then
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(1.3) YA e A AV = A(U**)
(1.4) co() = co(V**)
(co stands for the closed convex hull of a set.)

PROOF: Since V < V** we have A(V) <€ A(V**), X € A. To prove the inverse in-
clusion we need to show that a ¢ A(V) implies a § A(V**) for a € C, A € A,
and clearly we can restrict ourselves to the case a = 0. Thus consider X € A,
A =g, with 0¢ A(V). g is analytic in |z| <R for a certain R > 1. The

compactness of  then shows that
Uu={f«g ] f €V}

is a compact set of analytic functions in Iz[ < R. Our assumption on A and
(I.1) gives wu(l) # 0 for u € U. By compactness we conclude that the same is
true in a certain neighborhood of 1, in particular in a point X with

1 <x,<R. Let T(z) = g(xyz). Then ¥ is analytic in |z| =1 and for f € V
we obtain (g * f)(1) = (g * f)(xo) # 0. Since I 1is comnlete we have for

x| <1 and f e V: (8« f)(x) = (g * £)(1) # 0. Thus % € U* and for arbi-

trary z € U, f € U**, we get (g % f)(z) # 0. The choice =z = l/xO then gives
AE) = (g £)(1) = (@ £)(1/xy) £ 0

for f € VU**, This proves (1.3). Now assume co(l/) # co(V**). Then by a sepa-
ration theorem in locally convex separated topological vector spaces (compare [ 30,
section 20, 7.(1); section 16, 3.(1)]) there exists X € A which separates ele-

ments of VU** from V. This is impossible by (1.3).

Although (1.4) indicates a certain connection of duality and convexity it

turns out that the second dual V** 1is in general more closely related to a set



