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PREFACE

Steinitz’s Theorem (proved in 1922) is one of the oldest and most prominent
results in polytope theory. It gives a completely combinatorial characterization of
the face lattices of 3-dimensional polytopes. Steinitz observed that the technique
of proving his theorem also implies that for any 3-dimensional polytope the
set of all its realizations is a trivial topological set. In other words: realization
spaces of 3-dimensional polytopes are contractible. For a long time it was an
open problem whether there exist similar results in spaces of dimension greater
than three. It was proved by Mnév in 1986 that the contrary is the case. As a
consequence of his famous Universality Theorem for oriented matroids he showed
that realization spaces of polytopes with dimension-plus-four vertices can have
arbitrary homotopy type. The present research monograph studies the structure
of realization spaces of polytopes in fized dimension. The main result that is
obtained is a Universality Theorem for 4-polytopes. It states that for every
primary basic semialgebraic set V there ezists a 4-dimensional polytope whose
realization space is stably equivalent to V.

This research monograph has three goals. First of all it serves as a compre-
hensive source for all results that I have been able to obtain in connection to the
Universality Theorem for 4-polytopes. It includes complete proofs of all these
results including a proof of the Universality Theorem itself. Secondly, it is (as the
title says) meant as an introduction to the beautiful theory of realization spaces
of polytopes. For that purpose also a treatment of Steinitz’s Theorem is included.
Although the result is classical the proof presented here contains some new and
fresh elements. In particular, we provide a new proof for Tutte’s Theorem on
equilibrium representations of planar graphs. We also give a complete proof of
Mnév’s Universality Theorem for oriented matroids (and of its generalization:
the Universal Partition Theorem). Last but not least, this monograph is writ-
ten for the sake of enjoyment of geometric constructions. Most of the concepts
and constructions that are needed here are elementary in nature. The final con-
struction for the Universality Theorem is obtained by building larger and larger
polytopal units of increasing geometric and algebraic complexity. We start from
small incidence configurations, go to polytopes for addition and multiplication,
and end up with polytopes that encode entire polynomial inequality systems. I
hope that the reader can feel the fun that lies in these constructions.

There are many alternative ways of approaching the main results of this
monograph. In particular, there are several different ways to build up the proof
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of the Universality Theorem for 4-polytopes. However, all the approaches kown
to me rely on similar principles:

e first construct small and useful polytopes (using Lawrence Eztensions or
similar techniques) that have non-prescribable facets (or vertex figures),

e use connected sums to join these polytopes to larger units that are capable
of encoding arithmetic operations,

e finally use connected sums to join these arithmetic units into even larger
polytopes that encode entire polynomial inequality systems.

Here I have chosen an approach that is very modular. The basic building blocks
are very simple polytopes, and the whole complexity is governed by the way of
composing these blocks.

In order to obtain the strongest possible results it was necessary to set
up a new concept of stable equivalence that compares realization spaces with
other semialgebraic sets. The reader may excuse the fact that whenever stable
equivalence between two spaces is proved the exposition becomes a bit techni-
cal. Everywhere else I used concrete geometric approaches rather than abstract
settings. Whenever it is possible the constructions are carried out in an explicit
manner.

Part I to Part III are based on my Habilitationsschrift at the Technical
University Berlin, 1995. The typesetting of this monograph relies on IATEX.
Most of the drawings are done with Cinderella.

There are many people who have made the writing of this monograph pos-
sible. First of all I want to thank Giinter M. Ziegler for offering me a position
where I could concentrate mainly on this work. I am extremely grateful to him
for his careful reading of every page and for the uncountably many valuable sug-
gestions, discussions, comments and protests that encouraged me to go always
one step further than I had already done.

Also I am very grateful to Anders Bjorner, Marie-Frangoise Coste-Roy,
Henry Crapo, Eva-Maria Feichtner, Eli Goodman, Martin Henk, Peter Klein-
schmidt, Ulli H. Kortenkamp, Peter McMullen, Ricky Pollack, Jérg Rambau,
and Bernd Sturmfels for many inspiring discussions and valuable comments on
my manuscript in its various stages.

I especially, want to thank my wife Ingrid and my little daughter Angela-
Sophia, who was born on the day of the “breakthrough” for the main theorem.
Angela-Sophia’s inspiring presence definitely helped me to keep my thoughts as
simple as possible. Without Ingrid I would have never been able to write all
this. She always had an open ear for me that helped me to clarify my ideas, and
she accompanied me through all the “dead ends” that are unavoidable in such
a kind of work.

Berlin, October 1996 JURGEN RICHTER-GEBERT



Preface

CONTENTS

Introduction

1

Polytopes and their Realizations . . . . ... .. ... ......

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Polytopes . . . . . . . . . .
History I: Steinitz’s Theorem . . . . ... ... ... ...
History II: Polytopes in Dimension Higher than 3. . . . .
New Results on 4-Polytopes . . . . . . . ... ... ....
Polytopal Tools « « 5 5 o 5 s 5 5 5 8 ¢ 5 6 35 s wwwmsmns
Sketch of the Proof of the Universality Theorem . . . . .
Outline of the Monograph . . . . . .. . ... ... ....

Part I: The Objects and the Tools

2

Polytopes and Realization Spaces . . . . . .. .. ... . ... ..

21
2.2
2.3
2.4
2.5
2.6
2.7

Notational Conventions . . . . . . ... .. ... ... ..
Polytopes, Cones and Combinatorial Polytopes . . . . . .
Affine and Projective Equivalence . . . .. ... ... ..
Realization Spaces . . . . . . . . ... ... ... .....
Semialgebraic Sets and Stable Equivalence . . . . . . . ..
Polarity : : : : s s s vasmasew s s @@ & 86 68+ 8
Visualization of 4-Polytopes: Schlegel Diagrams . . . . . .

Polytopal Constructions . . . . . .. ... . ... .........

3.1
3.2
3.3
3.4

Pyramids, Prisms and Tents . . . . . ... ... ......
Connected Sums . . . . . . . . .. ...
Lawrence Extensions . . . . . . . . ... ... .......

BxarmipleS . : : : : : s s s s s pp s pFwmG @@y @@ oy >

Part II: The Universality Theorem

4

Equations and Polytopes . . . . . . . . ... ... ... ... ...

4.1

Shor’s Normal Form . . . ... . ... .. ... ......

S

W 3 O B W o =

—
(o=}

13
13
13
15
18
19
21
24
26
28
28
29
32
37



CONTENTS

4.2 Encoding Equations into Polygons . . . . . ... ... .. 42
5 The Basic Building Blocks . . . . . ... ... ... ........ 45
5.1 A Transmitter . . . . . . . . . ... 46
5.2 The Connector . . . . . . . . . .. . ... 47
5.3 A Forgetful Transmitter . . . . . ... ... ........ 48
5.4 A 4-Polytope with Non-Prescribable 2-Face . . . . . . .. 50
5.5 An Adapter . . . . ... ... ... e e e e e e e e e e e 51
5.6 A Polytope for Partial Transmission of Information . . . . 52
5.7 A Transmitter for Line Slopes . . . . . .. ... ... ... 53
6 Harmonic Sets and Octagons . . . . . .. ... ... ....... 55
6.1 A Line Configuration Forcing Harmonic Relations . . .. 55
6.2 The Harmonic Polytope . . . . . . ... ... ... ... 56
7 Polytopes for Addition and Multiplication . . . . . ... ... .. 59
7.1 Additionis « « s s s e mw s 5 & 5 7 5 ¥ ¢ 5 5 5 5 5 & @y H 59
7.2 Multiplication . . . . . . . . .. ... L oL 62
8 Putting the Pieces Together: The Universality Theorem . . . . . 68
8.1 Encoding Semialgebraic Sets in Polytopes . . . . . .. .. 68
8.2 The Construction Seen from a Distance . . . ... .. .. 69
8.3 Proving Stable Equivalence . . . ... ... ........ 71
Part III: Applications of Universality 77
9 Complexity Results . . . . . . ... ... ... ... ....... 77
9.1 Algorithmic Complexity . . . . ... ... ... ...... 77
9.2 Algebraic Complexity . . ... .. ... ... ... .... 78
9.3 The Sizes of 4-Polytopes . . . . . . . .. ... ... .... 81
9.4 Infinite Classes of Non-Polytopal Combinatorial 3-Spheres 84
10  Universality for 3-Diagrams and 4-Fans . . . . .. ... .. ... 87
10.1 3-Diagrams and 4-Fans . . ... ... ... ... ..... 7
10.2 The Polytope P'(S) . . . . . .. .. ... 90
103 Nets . . . . . o oo 92
10.4 'The Corollaries « « » « « « & = s 5 & 5@ s ¢ s 5 s 5 5 s & & 95
11  The Universal Partition Theorem for 4-Polytopes . . . . . . . . . 97
11.1  Semialgebraic Families and Partitions . . . .. .. .. .. 97
11.2  Shor’s Normal Form Versus Quadrilateral Sets . . . . . . 99
11.3 Computations of Polynomials . . . . . .. ... ... ... 101
11.4 Encoding Quadrilateral Sets into Polytopes . . . . . . .. 106
11.5  The “Switch Polytope” . .. .. ... ... .. ...... 107
11.6  The Universal Partition Theorem . . . . . . . .. ... .. 110

11.7  The Universal Partition Theorem for Point Configurations 112



CONTENTS

Part IV: Three-dimensional Polytopes

12 Graphs

12.1
12.2

13  3-Polytopes
From Stressed Graphs to Polytopes. . . . . . .

13.1
13.2
13.3

Preliminaries from Graph Theory . . . . . . ..

Tutte’s Theorem on Stresses in Graphs . . . .

A Quantitative Analysis . . . . .. .. .. ... ... ...
The Structure of the Realization Space. . . . .

Part V: Alternative Construction Techniques

14  Generalized Adapter Techniques

15 A Non-Steinitz Theorem in Dimension Five

15.1
15.2
15.3

16.1
16.2
16.3

Conics and Incidence Theorems . . . . . . . ..
An Incidence Theorem for 4-Polytopes . . . . .
The Non-Steinitz Theorem . . . ... ... ..
16  The Universality Theorem in Dimension 6
Oriented Matroids . . . . .. ... .. .....
Zonotopes and Planets . . . . . . .. ... ...
The Construction . . . . . . . . .. . ... ...

Part VI: Problems

17  Open Problems on Polytopes and Realization Spaces

17.1  Universality Theorems for Simplicial Polytopes

17.2  Small Non-Rational 4-Polytopes . . . . . . ..

17.3 Many Polytopes . . . .. ... .. ... ....

17.4  The Sizes of Polytopes . . . . . . ... .. ...

17.5 Rational Realizations of 3-Polytopes . . . . . .

17.6  The Steinitz Problem for Triangulated Tori . .
Bibliography

Index

xi

117
118
118
122
133
133
140
144

149
149
151
151
156
160
162
163
165
169

173
173
173
174
174
175
176
176

179

183



INTRODUCTION

1 DPolytopes and their Realizations

Polytopes have a long tradition as objects of mathematical study. Their historical
roots reach back to the ancient Greek mathematicians, having a first highlight
in their enumeration of the famous Platonic Solids. Already at this point strong
impetus came from the fact that polytopes intimately connect topics from ge-
ometry and from combinatorics (the Platonic Solids solve a first enumerative
question in polytopal geometry, to find all polytopes with a flag transitive sym-
metry group — a combinatorial concept). The work presented in this research
monograph is also motivated from questions that are on the borderline of geom-
etry, algebra and combinatorics. We investigate the structure of the realization
spaces of polytopes with fixed combinatorial types. Our aim is to exhibit a radical
contrast between the behavior of realization spaces for polytopes in dimensions
three and four.

For three-dimensional polytopes the structure of the realization spaces turns
out to be rather simple (a consequence of the classical Steinitz’s Theorem that
was already known in 1922). However, realization spaces of four-dimensional
polytopes can behave as complicated as one can think of (as a consequence of the
Universality Theorem first presented in this monograph). We will give complete
proofs of these two theorems and explore their far reaching consequences.

1.1 Polytopes
Formally, polytopes are the convex hulls of finite point sets in R9:

DEFINITION 1. Let P = (py,...,p,) € R*™ be a finite collection of points that
affinely span R%. The set

P = conv(P) := {i/\ipi[ Xn:,\,- —land )\ >0 fori= 1,...,n},

i=1 =1

the conver hull of the point set P, is called a d-dimensional polytope (a “d-
polytope” for short). The faces of P are P itself and the intersections PN A, such
that A is an affine hyperplane that does not meet the interior of P. The face
lattice of P is the set of all faces of P, partially ordered by inclusion.
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(a) (b)

Figure 1: A convex polygon and a cube. Two simple examples of polytopes.

While a polytope is a geometric object, its face lattice is purely combi-
natorial in nature. Figure 1(a) illustrates a 2-polytope as the convex hull of a
finite number of points in the plane. We see that those points that are not in
an extreme position make no contribution to the polytope itself. The points in
extreme position (i.e., the 0-dimensional faces) are the vertices of a polytope.
Figure 1(b) shows a cube as an example of a 3-dimensional polytope. The face
lattice of the cube consists of the cube itself, 6 facets, 12 edges, 8 vertices and
the empty set.

The need to structure the set of all polytopes of a fixed dimension leads to
two main lines of study:

e to list all possible combinatorial types of polytopes (in other words, to
determine which finite lattices correspond to face lattices of polytopes, and
which do not),

e to describe the set of all realizations of a given combinatorial type.

The “set of all realizations” of a combinatorial type is formalized below by
the concept of the realization space of a polytope. Besides their intrinsic impor-
tance for questions of real discrete geometry, such spaces appear in subjects as
diverse as algebraic geometry (moduli spaces), differential topology (see Cairns’
smoothing theory [21]), and nonlinear optimization (see Giinzel et al. [33]).

Assume that in Definition 1 each point p; for i = 1,...,n is a vertex of P.
A realization of a polytope P is a polytope @Q = conv(qy,...,q,) such that the
face lattices of P and @ are isomorphic under the correspondence p; — q;. The
sequence of vertices B = (py,..., Py, 1) is a basis of P if these points are affinely
independent in any realization of P.
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DEFINITION 2. Let P = conv(p,,...,p,) C R? be a d-polytope with n vertices
and with a basis B = (py,...,P4.1). The realization space R(P, B) is the set
of all matrices Q = (qy,...,q,) € R™ for which conv(Q) is a realization of P
andq; =p; fori=1,...,d+ 1.

By the choice of a certain basis for which the points have to stay fixed,
we factor out components in the set of all realizations of a polytope that come
from rotations and translations. It turns out that the realization space R(P, B)
is essentially (up to “stable equivalence,” see below) independent of the choice
of an admissible basis. Hence it makes sense to speak of the realization space
R(P) of a polytope.

Every realization space is a primary basic semialgebraic set: it is the set of
solutions of a finite system of polynomial equations f;(z) = 0 and strict inequal-
ities gj(x) > 0, where the f; and g; are polynomials with integer coefficients
on R4™. To see this, one checks that the realization space is the set of all matri-
ces Q € R¥™ for which some entries are fixed, and the determinants of certain
d x d minors have to be positive, negative, or zero.

Our main aim here is a Universality Theorem for 4-polytopes, stating that
for every primary semialgebraic V set there exists a 4-polytope whose realization
space is “stably equivalent” to V. The concept of stable equivalence will be
clarified in Section 2. It can be considered as a strengthened version of homotopy
equivalence that preserves also information on the underlying algebraic structure.
In particular, if two semialgebraic sets V and V' are stably equivalent and V'
contains non-rational points, then V' contains non-rational points as well.

1.2 History I: Steinitz’s Theorem

What does the realization space of a polytope look like? Which algebraic numbers
are needed to coordinatize the vertex set of a given d-dimensional polytope? How
can one tell whether a finite lattice is the face lattice of a polytope or not?

For 3-dimensional polytopes, Steinitz’s work [56, 55| answered the basic
questions about realization spaces more then seventy years ago. In particular,
Steinitz’s “Fundamentalsatz der konvexen Typen” (today known as Steinitz’s
Theorem) and its modern relatives (see [31] and [65]) provide complete answers
to the above questions for this special case.

STEINITZ'S THEOREM (1922): A graph G is the edge graph of a 3-polytope if
and only if G is simple, planar and 3-connected.

The classical proof by Steinitz is done by a clever combinatorial reduction
technique that allows one to generate larger 3-polytopes from smaller ones. Al-
ternatively, Steinitz’s Theorem can be proved using the Koebe- Andreev- Thurston
Circle Packing Theorem (see [65]), or by arguments using the concept of self-
stresses of planar graphs (see (23, 36, 47|, and Part IV). The statements in the
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following list can be derived from a careful inspection of the known proofs of
Steinitz’s Theorem.

e For every 3-polytope P C R? the realization space R(P) is a smooth open
ball. (This ball has dimension e — 6, if P has e edges.)

e For every 3-polytope P the space R(P) contains rational points, that is,
every 3-polytope can be realized with integral vertex coordinates.

e Every combinatorial 2-sphere is polytopal.
e BARNETTE, GRUNBAUM, 1970, [12]: The shape of one 2-face in the bound-

ary of a 3-polytope P can be arbitrarily prescribed, that is, the canonical
map R(P) — R(F) is surjective for every facet ' C P.

e ONN, STURMFELS, 1992, [51]: If a 3-polytope has n vertices then it can be
realized with integral coefficients smaller than nl6on®,

In Part IV of this monograph we will present a proof of Steinitz’s Theorem that is
based on the self stress approach. This approach also proves that the realization
space of any 3-polytope is contractible, and that it contains rational points. In
particular, our treatment will improve the bound given by Sturmfels and Onn.

e Any 3-polytope P2 with n vertices can be realized with integral coordinates
smaller than 287",

e If P furthermore contains a triangle, then it can be realized with integral
coordinates smaller than 43™.

One can prove statements similar to the above corollaries for d-polytopes
that have at most d + 3 vertices. Under (affine) Gale duality these polytopes are
encoded by certain point arrangements on a line. This fact leads to a classification
method that allows one to analyze these polytopes. Most of this analysis has been
done by Mani [44] and Kleinschmidt [41].

e Every combinatorial (d—1)-sphere with d + 3 vertices is polytopal.
e Every d-polytope with d+3 vertices can be realized with integral coeflicients.
e The realization space of every d-polytope with d + 3 vertices is contractible.

1.3 History II: Polytopes in Dimension Higher than 3

Over the years, it became clear that no similar positive answer could be expected
for high-dimensional polytopes. The situation becomes much more complicated
if either the dimension or the codimension exceeds three. We first discuss the
case of fixed dimension. There are several d-polytopes (with d > 3) known that
behave differently from 3-polytopes with respect to realizability. The following
list summarizes chronologically the counterexamples that are found to contrast
with the 3-dimensional case.

e PERLES, 1967, [31]:
Non-rational 8-polytope (12 vertices, 28 facets).
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e BARNETTE, 1971, (8]:
Non-polytopal combinatorial 3-sphere (8 vertices, 19 facets).

e KLEINSCHMIDT, 1976, [40]:
4-polytope with non-prescribable 3-face (10 vertices, 15 facets).

BARNETTE, 1980, [11]:
4-polytope with non-prescribable 3-face (12 vertices, 7 facets).

e Bokowskl, EwALD, KLEINSCHMIDT, 1984, [15, 16]:
4-polytope with disconnected realization space (10 vertices, 28 facets).

e ZIEGLER, 1992, [65]:
5-polytope with non-prescribable 2-face (12 vertices, 10 facets).

Besides these “sporadic examples,” no general construction technique was
known to produce polytopes with a “controllably bad” behavior for any fixed
dimension. The o-construction presented in [57] for that purpose turned out to
be incorrect [65].

If we investigate the case of codimension four much more is known and
general tools are applicable. In 1986 N.E. Mnév proved a Universality Theorem
for oriented matroids of rank 3 (see [7, 33, 52, 48, 49]). This result leads, via
Gale diagram techniques, to a universality theorem for d-polytopes with d + 4
vertices: in general for such polytopes the realization spaces can be arbitrarily
complicated. In technical terms the Universality Theorem can be stated as:

MNEV’S UNIVERSALITY THEOREM (1986):

(i) For every primary basic semi-algebraic set V defined over Z there is a rank
3 oriented matroid whose realization space is stably equivalent to V.

(ii) For every primary basic semi-algebraic set V defined over Z there is an
integer d > 1 and a d-polytope P with d+ 4 vertices whose realization space
is stably equivalent to V.

Stable equivalence is a strong concept of topological equivalence, that in
particular preserves homotopy type and the algebraic complexity of test points.
So Mnév’s construction implies:

e The realizability problem for d-polytopes with d + 4 vertices is (polynomial
time) equivalent to the “Existential Theory of the Reals.”

e The realizability problem for d-polytopes with d + 4 vertices is NP-hard.
e All algebraic numbers are needed to coordinatize all d-polytopes with d + 4
vertices.

e For every finite simplicial complex A there is a d-polytope with d+4 vertices
whose realization space is homotopy equivalent to A.

It will be the main purpose of this monograph to establish similar results for the
case of polytopes in fixed dimension d = 4.
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1.4 New Results on 4-Polytopes

We will constructively prove that the realization spaces of 4-polytopes can be
“arbitrarily ugly,” in a well defined sense.

UNIVERSALITY THEOREM FOR 4-POLYTOPES:

For every primary basic semi-algebraic set V defined over Z, there is a 4-polytope
P whose realization space is stably equivalent to V. The face lattice of P can be
generated from defining equations of V' in polynomial time.

The following new results are corollaries of the Universality Theorem or conse-
quences of the construction we provide for it.

(i) There is a non-rational 4-polytope with 33 vertices.
(ii) All algebraic numbers are needed to coordinatize all 4-polytopes.
(iii) The realizability problem for 4-polytopes is NP-hard.
(iv) The realizability problem for 4-polytopes is (polynomial time) equiva-
lent to the “Existential Theory of the Reals” (see [53]).

(v) For every finite simplicial complex A, there is a 4-polytope whose re-
alization space is homotopy equivalent to A.

(vi) There is a 4-polytope for which the shape of some 2-face cannot be
arbitrarily prescribed.

(vii) Polytopality of 3-spheres cannot be characterized by excluding a finite
set of “forbidden minors”.

(viii) In order to realize all combinatorial types of integral 4-polytopes with
n vertices in the integer grid {1,2,..., f(n)}%, the “coordinate size”
function f(n) has to be at least doubly exponential in n.

In particular these consequences solve all the problems that were recently
emphasized in Ziegler’s article “Three problems about 4-polytopes” [64].

The proof of the Universality Theorem is constructive. We will describe 4-
polytopes that model addition and multiplication by the non-prescribability of
a 2-dimensional face. The addition- and multiplication-polytopes will be joined
into larger units that model systems of polynomial equations and inequalities.

Our approach is in some sense analogous to Mnév’s original proof of his
Universality Theorem for oriented matroids. He uses the classical von Staudt
constructions (which model addition and multiplication for points on a line in
the projective plane) to compose large planar incidence structures that model
arbitrary polynomial computations. The main difficulty in Mnév’s proof is to
organize the construction in a way such that different basic calculations do not
interfere and such that the underlying oriented matroid stays invariant for all in-
stances of a geometric computation. Qur main difficulty will be the construction
of polytopes for addition and multiplication.
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1.5 Polytopal Tools

Lawrence extensions and connected sums are elementary geometric operations
on polytopes that form the basis for the constructions we need in order to prove
the Universality Theorem. They are very simple and innocent looking operations,
but they are very powerful.

For Lawrence extensions the basic operation is the following: take a point
p in a d-dimensional point configuration, and replace it by two new points
P and p that lie on a ray that starts at the original point and leaves the d-
dimensional space spanned by the point configuration in a “new” direction of
(d + 1)-dimensional space (see Figure 2).

p

Figure 2: A Lawrence extension of a pentagon.

Every such Lawrence extension increases both the dimension of a point
configuration and its number of points by 1. Note that although the original
point is deleted in the construction, it is still implicitly present: it can be ‘“re-
constructed” as the intersection of the line spanned by the two new points with
the d-hyperplane spanned by the original point configuration.

The “classical” use of Lawrence extensions [13, 6, 49] starts with a 2-
dimensional configuration of n points, and performs Lawrence extensions on all
these points, one by one. The resulting configuration of 2n points is the vertex
set of an (n+ 2)-dimensional polytope, the Lawrence polytope of the point config-
uration. Every realization of the Lawrence polytope determines a realization of
the original point configuration, including all collinearities and all orientations
of triples. In fact, the realization spaces of the Lawrence polytope and the planar
configuration are stably equivalent. This can be used to lift Mnév’s Universality
Theorem from planar point configurations (oriented matroids) to d-polytopes.

If one wants to stay within the realm of 4-polytopes, then it is not permissi-
ble to use more than two Lawrence extensions. However, careful use of just one
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or two Lawrence extensions on some points outside a 2- or 3-polytope leads to
extremely interesting and useful polytopes — such as the basic building blocks
for the Universality Theorem (see Section 5).

Connected sums are the operations that compose these basic building blocks
into larger units. They are performed as follows: Assume that one is given two
d-polytopes P; and P, that have projectively equivalent facets F; resp. Fp. We
use F' to denote the combinatorial type of F} = F,. Then, using a projective
transformation, one can “merge” P; and P, into a more complicated polytope,
the connected sum Q := Py# . P,. The polytope @ has all the facets of P, and
Py, except for F; and F,. However, the boundary complex 0F, consisting of all
the proper faces of F, is still present in @ (Figure 3).
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Figure 3: The connected sum of a cube and a triangular prism.

Now, if one takes an arbitrary realization of @, then it is not in general true
that this realization arises as a connected sum of realizations of P; and of Pxs:
in a “bad” realization of @ the boundary complex 0F may not be flat. In fact,
in dimension d = 3 one can see that the complex 0F in @ is necessarily flat if
and only if F'is a triangular facet. In dimension 4, there are much more different
types of facets that are “necessarily flat,” among them pyramids, prisms, and
“tents.” Only such necessarily flat facets are used in connected sum operations
for the proof of the Universality Theorem.

1.6 Sketch of the Proof of the Universality Theorem

Our proof starts from the defining equations of a primary basic semialgebraic
set, and uses them explicitly to construct the face lattice of a 4-polytope. A
result of Shor [53] is used, which states that every primary semialgebraic set V'
is stably equivalent to a semialgebraic set V' € R™ whose variables

l=z1<z9<T3<...<2,



