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Preface

This book is devoted to the phenomenon of quasi-periodic motion in dynamical systems.
Such a motion in the phase space densely fills up an invariant torus. This phenomenon is
most familiar from Hamiltonian dynamics. Hamiltonian systems are well known for their
use in modelling the dynamics related to frictionless mechanics, including the planetary
and lunar motions. In this context the general picture appears to be as follows. On the
one hand. Hamiltonian systems occur that are in complete order: these are the integrable
systems where all motion is confined to invariant tori. On the other hand, systems exist
that are entirely chaotic on each energy level. In between we know systems that, being
sufficiently small perturbations of integrable ones, exhibit coexistence of order (invariant
tori carrying quasi-periodic dynamics) and chaos (the so called stochastic layers). The
Kolmogorov-Arnol'd-Moser (KAM) theory on quasi-periodic motions tells us that the
occurrence of such motions is open within the class of all Hamiltonian systems: in other
words, it is a phenomenon persistent under small Hamiltonian perturbations. Moreover.
generally, for any such system the union of quasi-periodic tori in the phase space is a
nowhere dense set of positive Lebesgue measure, a so called Cantor family. This fact
implies that open classes of Hamiltonian systems exist that are not ergodic.

The main aim of the book is to study the changes in this picture when other classes
of systems - or contexts - are considered. Examples of such contexts are the class of
reversible systems, of volume preserving systems or the class of all systems, often referred
to as “dissipative”. In all these cases, we are interested in the occurrence of quasi-periodic
motions, or tori, persistent under small perturbations within the class in question. By an
application of the KAM theory it turns out that in certain cases, in order to have this
persistence, the systems are required to depend on ezternal parameters. An example of
such a situation is the dissipative class, where quasi-periodic attractors are found. These
attracting quasi-periodic tori are isolated in the phase space and they are only persistent
when at least one parameter is present. In that case, generally, the set of parameters for
which such an attractor occurs has positive Lebesgue measure. Quasi-periodic attractors
are well known to be a transient stage in a bifurcation route from order to chaos.

The KAM theory is a powerful instrument for the investigation of this problem in a
broad sense, describing the organization of invariant tori as Cantor families of positive
Lebesgue (Hausdorff) measure. It yields a unifying approach for all cases, leading to
a formulation with a minimal number of parameters. In this book, we discuss various
aspects of the KAM theory. However, there are still many problems of the theory outside
the scope of the present text. Some of these will be briefly indicated.

We proceed in giving an outline of the text. In introductory Chapter 1 we present a
more precise formulation of our main problem illustrating this with many examples. Here
we also define the contexts to which we apply our approach throughout. These include two
different reversible contexts and. in the Hamiltonian setting next to the isotropic case, also
the coisotropic one. The Chapters 2 and 3 form the “kernel” of the book. In Chapter 2 first
we formulate the conjugacy or stability theory. Depending on the context, we introduce a
suitable number of unfolding parameters which stabilize the systems within their context
for small perturbations. This stability only holds on Cantor families of invariant tori
with Diophantine frequencies (or KAM tori), the corresponding conjugacies being smooth
in the sense of Whitney. This approach first leaves us with families that depend on
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a great many parameters, but the discussion continues by systematically reducing the
number of parameters to a minimum, where still sufficiently many tori are left, in the
sense of Hausdorff measure. Main tool here is the Diophantine approximation lemma in
the form close to that of V.I. Bakhtin. Chapter 3 subsequently discusses the theory on
the continuation of analytic tori due to A.D. Bruno.

Next, in Chapter 4, we discuss the organization of the Cantor families of tori as they
occur in our various contexts, including estimates of the appropriate Hausdorft measure.
We also present some considerations regarding the dynamics in the “resonance zones”,
i.e., in the complement of the KAM tori (including Nekhoroshev estimates on solutions
near those tori).

Chapter 5 presents conclusive remarks on the subject. Correspondences and differences
between the cases of vector fields and diffeomorphisms are discussed. Also we show that,
generally, the KAM tori accumulate very much on each other, which can be concisely
formulated in terms of Lebesgue density points.

Chapter 6 consists of appendices. In the first of these, the stability theorem is proven
in one of its simplest forms. Other appendices fully describe the Bruno theory and the
Diophantine approximation lemma.

The style of the book makes it suitable for both experts and beginners regarding the
KAM theory. On the one hand, it presents an up to date and therefore quite advanced
overview of the theory. On the other hand, it contains an elementary introduction to
Whitney differentiability and a complete proof of the simplest stability theorem in this
respect. By this and the other details of the appendices, the text is largely self-contained.
Also it contains an extended bibliography (which does not, of course, claim to be complete).

The authors are grateful to V.I. Arnol'd, B.L.J. Braaksma, S.-N. Chow, S.A. Dovbysh,
J.K. Hale, M.R. Herman, I. Hoveijn, Yu.S. [l'yashenko, H.H. de Jong, S.B. Kuksin, J.S.W.
Lamb, V.F. Lazutkin, M.V. Matveev, J.K. Moser, A.l. Neishtadt, G.R.W. Quispel, J.
Péschel, F. Takens, and D.V. Treshchév (in alphabetical order) for long-time support,
fruitful discussions, pointing out references, meticulous reading of some technical details
or, generally, encouragement. Also the first author acknowledges hospitality from the
Georgia Institute of Technology during the preparation of the manuscript. The third
author thanks the Groningen University for its hospitality.

H.W.B., G.B.H. & M.B.S.
Groningen, September 1996



Notation

Although, as a rule, we explain each notation where it first appears in the book, some
notations used frequently in the sequel are collected here. Some basic sets are denoted by
the “open font” (or “blackboard bold”) characters. The symbols Z, Q, R, and C require
no comments, Ry will denote the set of non-negative real numbers, Z, is the set of non-
negative integers, and N = Z, \ {0} is the set of positive integers. The symbol S™ denotes
the unit n-dimensional sphere in R**', and T" = (S')" = (R/27Z)" is the standard n-
torus. Also, RP" is the n-dimensional real projective space, and IT : R**" \ {0} — RP"
denotes the natural projection. Note that each of the spaces T® and RP? is a point, while
S% is the disjoint union of two points. Note also that RP' ~ §' = T*.

The symbols O, (a) will denote a neighborhood of a point a € R". In particular, O, (0)
is a neighborhood of the origin in R". We write O(a) instead of O, (a) for a € R.

By the angle brackets, we will denote the standard inner product of two vectors, so
that

(a,b) =351 a;b, for a€R'beR"

The symbols |a| and ||a|| will denote the /;-norm and l,-normi (Euclidean norm), respec-
tively, of vector a (unless when stated otherwise):

la| =30, la;] and Jla|* =%, a]? for a€C".

For the Landau symbols, we write O,,(u) instead of O(|u|™) [and O(u) instead of
O, (u) = O(Ju])] for m € N and any (scalar or vector) independent variable u. By D,F
we will sometimes denote the Jacobi matrix JF/du. The relation a := b will mean that
equality a = b is the definition of quantity a. By logu we denote log, u (which is often
designated by Inu elsewhere). The boundary of manifold or set M is denoted by dM.
The interior of set M is denoted by int(M) and the closure of set M by cl(M) or M.
The symbols diag(a,,as,...,a,) mean the diagonal n x n matrix with diagonal entries
ay,as,,...,a,. The matrix transposed to A is denoted by A'. The dot means differentiation
with respect to time: & := dz/dt and 7 := d*z/dt*. The average of a function over T" will
be sometimes denoted by the square brackets [-]. Mark O means the end of the proof.

The notations [a, b]. [a,b[, Ja.b]. and Ja,b] for —oo < a < b < 400 mean respectively
the intervals {z : a <z <b}, {z : a<z<b},{r : a<z<b},and {z : a <z < b}
For example, Ry = [0, +o00[. Given z € R, the integral part of z is denoted by Entier(z) :=
max{m € Z : m < z} = max(ZN] — oo, z]). If Entier(z) = ¢ then ¢ <z < ¢+ 1.

The n-dimensional Hausdorff measure in RY for N > n (see Federer [114] or Mor-
gan [242]) will be denoted by meas, (elsewhere usually denoted by H™). For N = n the
measure meas, coincides with the standard Lebesgue measure £ in R™.

The term “analytic” will always refer to mappings between real manifolds (equipped
with an analytic structure), whereas holomorphic functions f : D — (C/2xZ)M x C™2,
D C (C/2nZ)™ x C™, that are real-valued for real arguments will be called “real analytic”.
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Chapter 1

Introduction and examples

1.1 A preliminary setting of the problem

This book investigates the occurrence of quasi-periodic motions in dynamical systems with
special emphasis on the persistence of these motions under small perturbations of the sys-
tem. Quasi-periodic motions densely fill up invariant tori, therefore this study can be
regarded as a part of a more general theory of invariant manifolds. The existence, persis-
tence and other properties of invariant manifolds play a fundamental réle in the analysis
of nonlinear dynamical systems [67, 115, 158, 356]. In this book we confine ourselves with
finite dimensional systems. For the theory of quasi-periodic motions in infinite dimen-
sional dynamical systems, the reader is recommended to consult, e.g., [185, 186, 279 -281]
and references therein.

The perturbations we will consider, although small in an appropriate sense, will be
arbitrary. However, it is important to specify whether the whole perturbation problem,
for example, sits in the Hamiltonian context, or has to respect a certain symmetry, or is
subject to no restriction whatsoever. Such a class of vector fields to be examined is often
referred to as a “context” of the problem [60,62,162]. In many of these cases one needs
parameters to achieve persistent occurrence of quasi-periodicity, where the specific réle of
the parameters depends on the context at hand.

One reason for the need of parameters is the following. In the perturbation analysis
of quasi-periodic tori we follow a specific torus through the perturbation. In this “con-
tinuation process” the frequencies of the torus are kept constant. This means that these
frequencies somehow have to be treated as parameters of the system. In the classical
Hamiltonian context with Lagrangian tori, these frequency-parameters can be accounted
for by the action variables, granted some nondegeneracy. However, in the context of gen-
eral (or “dissipative”) systems this is not possible and parameters have to be explicitly
present in the setting. Therefore in the title of this book we speak of “families of dynamical
systems”.

The main problem will be what is the minimal number of parameters needed in order to
have persistence of quasi-periodicity. We will discuss the organization of the tori in families
parametrized over Cantor sets of positive Lebesgue measure in a Whitney-smooth manner.
A related problem is how to apply the theory to examples where a number of parameters is
available.
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Several types of examples of dynamical systems with quasi-periodicity will appear
in the sequel. Among these are oscillators with weak forcing, either periodic or quasi-
periodic, or with weak couplings between them. Another class of applications is given by
Bifurcation Theory: subordinate to some degenerate bifurcations quasi-periodic motion
shows up in a persistent way.

1.1.1 Definitions

A torus with parallel dynamics. Consider a smooth vector field X on a manifold
M with an invariant n-torus T. We say that X on T induces parallel (or conditionally
periodic, or Kronecker, or linear) motion, evolution, dynamics, or flow, if there exists
a diffeomorphism 7" — T" transforming the restriction X|r to a constant vector field
S w,d/0x; on the standard n-torus T" := (S')" = (R/27Z)" with angular coordinates
Ty.To,....x, modulo 27. In a more familiar notation, this vector field determines the
system 7, = w,, | <1 < n, of differential equations. The numbers w,,w,,...,w, are called
(internal) frequencies of the motion (evolution, dynamics, or flow) on 7', but also of the
invariant torus 7' itself.

Remark 1. The frequency vector w = (w;,wa,...,w,) € R" is determined uniquely up to
changes of the form w +— Aw, where A € GL(n,Z), i.e., A is an n x n matrix with integer
entries and determinant +1.

Remark 2. Invariant tori with parallel dynamics are of great importance in the theory of
dynamical systems which stems, in the long run, from the fact that any finite dimensional
connected and compact abelian Lie group is a torus [2,50,236]. A close more geometric
statement is that the factor group RN/F of RY by a discrete subgroup I is TV provided
that R /I is compact [13].

More generally, any finite dimensional connected abelian Lie group is the product
T" x R™ and the factor group of RV by any discrete subgroup is T" x RV™" for some
0 < n < N. The latter statement is the key one in the proof of the Liouville- Arnol'd
theorem on completely integrable Hamiltonian systems (see Theorem 1.2 in § 1.3.2 below).

The dynamical properties of an invariant torus with linear flow are very sensitive to
the number-theoretical properties of its frequency vector.

A quasi-periodic torus. A parallel motion on an invariant n-torus 7' with frequency
vector w is called quasi-periodic or nonresonant if the frequencies w,, ws,...,w, are ratio-
nally independent, i.e., if for all k € Z" \ {0} one has (w,k) := 31", w;k; # 0. In this case
the torus T itself also is said to be quasi-periodic. Otherwise an invariant torus 7' with
parallel dynamics is called resonant. For example, the 2-torus of Figure 1.1 with parallel
dynamics is quasi-periodic if and only if the ratio of the corresponding frequencies w, and
wo is Irrational.

Quasi-periodic tori are densely filled up by each of the orbits (or solution curves) con-
tained therein. The whole motion then is ergodic [17]. However, quasi-periodic dynamics
is not chaotic, since by the parallelity there is no sensitive dependence on the initial con-
ditions.

The resonant tori are foliated by invariant subtori of smaller dimension. In all the
contexts to be met below, a Kupka-Smale theorem holds (cf. [260, 265]), generically for-
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Figure 1.1: Evolution or solution curve of a constant vector field w,d/0z, + w,0/0x, on

the two-dimensional torus T-.

bidding the existence of resonaut tori. For a more detailed discussion, see one of the
examples in the next section. As a consequence, all the invariant tori with parallel flow
of a generic dynamical system are quasi-periodic. Moreover, it turns out that most of the
invariant tori with parallel dynamics in the phase space of a generic vector field satisfy
stronger nonresonance conditions, as we shall introduce now.

A Diophantine torus. Our study is a part of the Kolmogorov-Arnol'd-Moser (KAM)
theory (named after its founders A.N. Kolmogorov [179,180], V.I. Arnol'd [4.5,8], and
J. Moser [243,245]) which generally establishes the existence and persistence of quasi-
periodic tori in dynamical systems. In this theory the frequencies of quasi-periodic tori
are not only rationally independent, but have to meet the following, stronger nonresonance
condition. We say that an invariant n-torus 7' with parallel dynamics is Diophantine if
for some constants 7 > 0 and vy > 0 the corresponding frequency vector w satisfies the
following infinite system of inequalities:

[, k)] = Ik~ (L.1)

for all k € Z"\ {0}, where |k| := 3!, |k;|. Clearly Diophantine tori are quasi-periodic, but
not vice versa. For 7 > n — 1 the set of all frequency vectors w € R" that are Diophantine
in the above sense has positive Lebesgue measure [337).

Example 1.1 Each equilibrium point of a vector field is a Diophantine invariant 0-torus.
Each S-periodic trajectory of a vector field is a Diophantine invariant 1-torus with fre-
quency 27/S.

A Floquet torus. An invariant n-torus 7" with parallel dynamics of a vector field X on
an (n+ m)-dimensional manifold is called Floguet if near 7', one can introduce coordinates
(r € T",y € R™) in which the torus T itself gets the equation {y = 0} while the field X
determines the system of differential equations of the so called Floquet form

w+ O(y)
Qy + O, (y) (1.2)

Il

i

Y
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with © € gl(m, R) independent of z € T", compare [60, 62, 162]. If this is the case, matrix
Q is called the Floquet matriz of torus T. Of course, near any invariant n-torus 7' with
parallel dynamics, one can introduce coordinates (z € T",y € R™) in which the torus T
itself gets the equation {y = 0} while the field X determines the system of differential
equations

& = w+0(y)
§ o= Qz)y+0x(y) (1.3)

Il

with Q@ = Q(z) € gl(m,R) depending smoothly on z € T" (provided that a certain
neighborhood of T is diffeomorphic to T" x R™, i.e., the normal bundle of T' in the phase
space is trivial' [157]). Note that § = Q(z)y is the variational equation along T'. The
torus T is Floquet if matrix © can be made independent of the point on T' (reduced to a
constant) by an appropriate choice of local coordinates.

To any Floquet invariant torus with parallel dynamics, one associates the so called
normal frequencies, i.e., the positive imaginary parts of the eigenvalues of its Floquet
matrix. The Diophantine tori that the KAM theory can deal with in general also have to
be Floquet [12, § 26], for some exceptions see, e.g., [137, 138,364] (these papers concern
the so called hyperbolic lower-dimensional tori in Hamiltonian systems, cf. the remark at
the end of § 2.3.4) and Chapter 3 below as well. Moreover, the internal wy,w,,..., Wh
and normal w Wl ... WV frequencies of these tori (0 < r < m) should satisfy further
Diophantine conditions

[{w, k) + (W™, )] > Ikl (1.4)

for all &k € 2"\ {0}, ¢ € Z7, |¢] < 2 with some constants 7 > 0 and v > 0, as we will
see below in Section 2.1. Note that for ¢ = 0, inequalities (1.4) are just the standard
Diophantine inequalities (1.1).

Remark 1. The Floquet matrix is determined up to similarity, i.e., up to changes of the
form Q — A7'QA, where A € GL(m, R).

Remark 2. Recall that the Floquet multipliers of a periodic trajectory are the eigenval-
ues of its monodromy operator [12, § 34] (sometimes these are also called characteristic
multipliers [1, Sect. 7.1]). If in (1.2) n = 1, then the period and monodromy operator
of closed trajectory {y = 0} are equal respectively to 2m/w and e***/“. Consequently, if
the eigenvalues of the Floquet matrix of an S-periodic trajectory are Ay,..., A, then its

Floquet multipliers are e5*1 . SAm,

.,€
Remark 3. An equilibrium point is always Floquet. A periodic trajectory is Floquet
if and only if its monodromy operator has a real logarithm (the Floquet theorem, see
Arnol'd [12, § 26]). The question is now prompted under what conditions the system of
differential equations (1.3) near an invariant torus with parallel dynamics can be reduced to
the Floquet form (1.2). It is known, see [5, 12], that for rn = 1 and arbitrary n reducibility
to the Floquet form does take place for Diophantine tori. This problem will be treated
below in detail (see § 1.5.1).

'This is not always the case. No neighborhood of the central circle on the Mébius strip is diffeomorphic
to the cylinder S' x R
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For m > 2, non-pathological examples exist where reducibility does not hold. So, in
general reducibility involves an assumption, which turns out to be satisfied typically when
sufficiently many parameters are present. For more details here see, e.g., [5, 42, 62, 64, 148,
149, 162,167, 168, 170, 171, 184].

In examples, reducibility often holds due to a normalization (averaging), see, e.g.,
Arnol'd [12] and Broer & Vegter [56, 66]. For Hamiltonian vector fields, reducibility is often
implied by the presence of sufficiently many additional integrals in involution [184, 256].

1.1.2 Contexts

We next point briefly at the contexts to be explored, for detailed definitions and more
up-to-date references see Section 1.3 below. The most important contexts are the Hamil-
tonian, the volume preserving and the reversible ones, as well as the general “dissipative”
one. A Lie algebra of systems is often involved in the definition of the context, this being
a natural way to express the “preservation of a structure”. .

In the sequel, several refinements of these contexts will be considered. Also the central
question mentioned before, regarding the minimal number of parameters necessary to
obtain the persistence of Diophantine invariant tori, will be addressed.

The Hamiltonian context. With respect to quasi-periodicity the most well known
context is Hamiltonian (conservative), defined by the preservation of a symplectic form.
This context is notorious for its strong relation to mechanics [1, 5,13,17,130, 182, 183, 201,
335]. The classical result roughly states that in this context, it is a typical property to have
many so called Lagrangian quasi-periodic invariant tori, seen from the measure-theoretical
point of view. This implies that non-ergodicity is a typical property as well [219].

This “classical” KAM theory was initiated by Kolmogorov [179] in 1954 (see also [180]
and [14,235] as well) and further developed by Arnol'd [(4,5], Moser [243], and many
others. For details we refer to, e.g., [13, 20, 30,91-93, 103, 122, 129, 130, 133, 201, 248, 277,
278,282, 306, 307, 335]. For a review and a large bibliography, also see Bost [43]. A further
refinement of this theory is given in the sequel.

The dissipative context. Another important context is the “dissipative” one, where
no structure at all is present. Here the notion of a quasi-periodic attractor comes up as a
quasi-periodic torus that is isolated in the phase space. Although quasi-periodicity itself
is not considered to be chaotic, this type of dynamics is a possible transient stage between
order and chaos, cf. Ruelle & Takens 296, 297], see also [32]. In the dissipative context,
parameters are needed in order to have the persistence of quasi-periodic motions. In a
suitable class of families of dissipative systems, it is typical to have many parameter values
with a quasi-periodic motion, again in the sense of the measure theory.

This part of the KAM theory was first developed by Moser [244, 246] and later on taken
up by Broer, Huitema & Takens [62, 162]. Also these results will be explored further below.

The volume preserving context. The volume preserving context shows up, for exam-
ple, when describing the velocity field of an incompressible fluid. With respect to quasi-
periodicity, it has been studied by Moser [244, 246] and later on by Broer & Braaksma [46,
53]. It turns out that the case of codimension 1 Diophantine tori is much related to the
above Hamiltonian one, while the case of codimension no less than 2 is very similar to the
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general dissipative one. This theory was also taken up in [62,162] and will be presented
and extended in the sequel.

The reversible context. Reversible systems are compatible with some involution G,
that takes motions to motions while reversing the time parametrization. This concept
often comes up in physical systems and is also known for some great similarities with
the Hamiltonian case (in particular, regarding quasi-periodicity), see a list of such sim-
ilarities in [320]. The reversible KAM theory was initiated by Moser [244, 246, 248] and
Bibikov & Pliss [35. 36, 38, 40] and later on extended by Scheurle [310-312], Parasyuk [262],
Poschel [278], Arnol'd & Sevryuk [11,22,315, 316, 318], and others. Recently the theory
has taken a lot of interest, leading to new developments that we will come back to later.

1.2 Occurrence of quasi-periodicity

This section is devoted to a few simple examples of dynamical systems, sometimes depend-
ing on parameters, where quasi-periodicity occurs in a persistent way. These examples are
situated in various contexts and motivate the introduction of parameters. Also, a first
idea is given of the Whitney-smoothness of families of Diophantine invariant tori. The
examples given here all are in the world of oscillators, with forcings (both periodic and
quasi-periodic), couplings, etc.

1.2.1 Quasi-periodic attractors

The first examples are within the dissipative context, involving quasi-periodic attractors,
cf. Broer, Dumortier, van Strien & Takens [58, Ch. 4] and Broer [57] (see also Bogolyubov,
Mitropol'skil & Samoilenko [42]). We shall see that for the persistence of these attractors,
the systems in question (vector fields) have to depend on “external” parameters. For
simplicity we restrict ourselves to the case of 2-tori, where the discussion leads to circle
maps, compare [12, § 11].

YA

<Y

B _

Figure 1.2: A hyperbolic periodic attractor (limit cycle) of the free oscillator.
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We give two examples, both being based on a nonlinear oscillator
j+cy+ay+ fly.y) =0

with y € R, which is assumed to have a periodic attractor. Here a and ¢ are real constants.
For example, one may think of the “Van der Pol” form f(y,y) = by*y [58, Ch. 1], b being a
real constant. In Figure 1.2, the corresponding phase portrait is shown in the (y, y)-plane.

Periodic forcing. In the first example we force this oscillator periodically, which leads
to the following equation of motion:

y+cy+ay+ fly.y) =eg(y.y.t) (1.5)

with g(y,y.t + 27) = g(y.y,t). For simplicity we assume the functions f and g to be
analytic in all the arguments; € is a small parameter “controlling” the forcing. In this
example we consider the three-dimensional extended phase space R® x S' with coordinates
(y.y,t mod 27), where we obtain a vector field determining the system of differential

equations
y = =z
2 = —ay—cz— f(y,z) +€eg(y,z,t)
t = 1

Coupling. In the second example we consider two “Van der Pol”-type oscillators. as
before, with a coupling:

G+ e tay + Hynn) = eq(y Y2 YY)

o + C2l2 + Aoy + [o(y2,92) = €92(Yr,s Y2, Uns Ya)- (1.6)
Here y; € R while a;, ¢; are real constants for j = 1, 2. The functions f;, g; (7 = 1, 2)
are again assumed to be analytic and € is a small parameter. The phase space here is

therefore R* with coordinates (y1,ya,91,92), on which we obtain a vector field determining
the system of differential equations

Yi = Zj

—a;Yyj —C;jz; — f}(yj'zj) =+ fg)(ylwy%zlsz'l)

Il

2_7
for j =1, 2.

A preliminary perturbation theory: The torus as an invariant manifold

The torus as an invariant manifold. First we consider the “unperturbed” case € = 0,
where in both examples the situation is simple. Indeed, in the three- (respectively four-
dimensional) phase space we find an attracting invariant 2-torus with suitable coordinates
(x,,z, modulo 27), in which the differential equations afforded by the restricted vector
field have the constant form &; = w;, &3 = w,. From hyperbolicity of each limit cycle
it follows that normally to this torus, the attraction already can be seen from the linear



