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PREFACE

A perennial problem facing teachers of mathematics is the determination of the
proper time for introducing the student to the “delta-and-epsilon” type of mathe-
matical rigor, sometimes referred to informally as “epsilonics.” Experience in recent
years has convinced many people that much of the subject matter of “‘epsilonics”
can be effectively taught at a much earlier stage in a student’s academic career than
had at one time seemed possible. However, the fact remains that most students do
have difficulty when first confronted with the limit concept. What is the best solu-
tion for the problem posed above? Should a considerable period of time be invested
in a purely intuitive approach before the student is asked to face the harsh realities of
mathematical analysis? Or is it possible to present “epsilonics™ in such a fashion
and with such a timing that the student can assimilate the essential ideas in a natural
way and with a reasonably correct intuitive understanding?

For purposes of discussion let it be agreed that the limit concept is a complicated
and difficult one for most students new to calculus. Explicitly or implicitly the
formulation of a limit statement uses not only a universal quantifier and an existen-
tial quantifier but also an implication involving two inequalities (or the equivalent
in terms of a neighborhood and a deleted neighborhood). One of the principal as-
sumptions determining the character of the present book is that the most appropriate
groundwork for the study of limits is a substantial amount of detailed and careful
work with inequalities, implications, and quantifiers before these are all combined
into the type of compound statement needed for limits. For this reason, and also
because of the many variants that involve “neighborhoods of infinity,” the treatment
of limits has been placed as late as possible, in Chapter 10. This postponement of
limits is made possible, in part, by the earlier discussion, in Chapter 9, of continuity
(free from the complications of infinities and deleted neighborhoods), but more
especially by the still earlier focusing of attention on such global concepts as the
Riemann integral, in Chapters 6 and 7, and uniform continuity, in Chapter 8.

Placing the introduction of the definite integral before that of the derivative has a
well-recognized historical background, but it also has a sound logical justification.
When the Riemann integral is approached by means of step-functions the definition
of integrability involves only two quantifiers and a single inequality, and the defini-
tion of the Riemann integral itself is simultaneously the supremum of one set and the
infimum of another. The avoidance, at this stage, of implications between pairs of

vii
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inequalities provides a natural arena for students to get a mathematical workout
with quantifiers. Then later, when it is time to struggle with limit statements, the
quantified portions have become familiar objects and are no longer a barrier.

It is possible that some readers of this preface are not disposed at first to agree
with the proposition that the global concept of uniform continuity is a simpler one
than the local concept of ordinary continuity. Undoubtedly, if one wishes only to
talk intuitively in terms of “approach” or ‘“‘nearness” with accompanying ‘“‘hand-
waving’’ gestures, uniform continuity is more complicated. However, it is when one
expresses himself in exact terms that this concept becomes simpler. More precisely,
it is nearly always simpler to find an explicit § in terms of e for a function on a set
than for a function at a point. An example may help clarify this statement. For the
“squaring” function x — x2 on the compact interval [3, 5] a suitable § can be found
quite simply to be ¢/10, whereas for this same function at the point 3, either § turns
out to be something like min(1, ¢/7) or else e must be artificially limited in size. In
fine, the position adopted in this book is that to concentrate on relatively simple
global concepts before turning attention to point-wise continuity and limits makes
good sense, and is preferable in the long run to the more traditional intuitive ap-
proach which necessitates an often painful relearning process later.

The dominant philosophy of this book emphasizes concepts and structure, with the
dual objectives of developing an appreciation for a truly beautiful and well-conceived
subject and exploiting the great potentials of these concepts and structures. The
concept of vector space should serve to illustrate what is meant. Vector spaces are
introduced first for function spaces, with examples such as bounded functions, step-
functions, and polynomials. It then becomes natural to develop the Riemann
integral as a positive linear functional on the vector space of integrable functions.
Then later, many of the standard theorems of continuous functions and limits find
simple expression when cast in the language of vector spaces and algebras of func-
tions. Furthermore, these same ideas become tools when it is shown that the Rie-
mann integral can be obtained as the limit of a sum. Later in the book, generous
attention is again devoted to vector spaces and algebras, this time in the context of
matrices and vectors in two and three dimensions. Eigenvalue techniques are used
effectively to simplify transformations of equations of the second degree.

In order to achieve the goals enumerated above, the first two chapters contain an
introduction to sets and logic. Truth sets serve to explain exactly what an implica-
tionis. The quantifier symbols V and 3 are used widely, and their role in the formula-
tion of negations is discussed carefully and used frequently. Both the nature of a
proof and the meaning of a counterexample are given considerate attention. The
groundwork laid in the first two chapters forms the basis for the extensive use of
both sets and logic throughout the book. It is felt that the time spent initially in
forming a sound foundation for the ideas that are so essential to calculus is well
worth the investment, and is amply justified by the ultimate dividends in the form of
understanding and intellectual satisfaction.

Alternative formulations are sometimes included. For example, several limit
statements are expressed in terms of deltas and epsilons, neighborhoods and deleted
neighborhoods, and mappings. These alternatives help provide a broad and varied
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texture for the underlying flow of ideas, as well as emphasizing a basic unity that
pervades many apparently dissimilar settings.

Much attention is given to applications. For example, Chapter 7 is devoted
entirely to such applications of the Riemann integral as area, volume, work, and
distance. Applications of the derivative are scattered through most of the chapters.
Differential equations find their first use in Chapter 18, where they are applied to
problems involving gravitation, orthogonal trajectories, radioactive decay, bacterial
growth, cooling, and mixing. The final Chapter 34 returns to the subject of differen-
tial equations, concentrating on linear equations with constant coefficients and their
applications. Extremal problems receive unusually thorough consideration, with
full attention given to sufficiency conditions and endpoint extrema.

Area and volume are introduced axiomatically, each being a positive additive
function on a ring of sets and satisfying a certain completeness axiom. For a
function of a single real variable these axioms suffice for establishing the theorem
that the ordinate set of a nonnegative Riemann-integrable function f on a compact
interval has area equal to the integral of f.

Elliptic notation (for example, ““the function e2+ sin 3x™) is discussed clearly so
that the student learns to understand and use both the strict f and the elliptic nota-
tion. This is important since both notations abound in the mathematical literature
of the world.

Special attention should be called to the character and arrangement of honors
sections, suitable for enrichment content in honors courses. These honors sections
are planned so as to permit an honors course running concurrently with a standard
course to cover the standard as well as the extra material, and also to permit ex-
ploratory reading and extra assignments for interested and capable students who are
not registered in a special honors class. In order that a student may be able to
transfer either out of or into an honors sequence between terms it is desirable that the
honors course keep pace with the standard course to which it corresponds. This is
made especially feasible for courses using this book by the uniform arrangement of
the honors sections, which constitute exactly twenty percent of the sections, as
follows: Every chapter contains a multiple of ten sections, including sections of
exercises; every section whose number ends with the digit 9 is an honors section, and
every section whose number ends with the digit O is the accompanying honors section
of exercises. All honors material is identified by the letter H.

The division of the book into two volumes is done simply to reduce the bulk of the
alternative of a single tome. The place of division between Chapters 21 and 22
achieves a local minimum for cross-references between the two volumes. The use of
a table of integrals is limited to the second volume.

The book is designed for courses of three semesters — or four or five quarters —
meeting four or five days a week. Prerequisite is a standard high school mathematical
preparation, including trigonometry and college algebra. Review material in
trigonometry and such topics as mathematical induction is included.

Over 6000 exercises of all levels of difficulty are available, for practice, for chal-
lenge, and for individual exploration. These exercises form an essential part of the
book, and are designed to fortify and deepen, as well as guarantee, learning. An-
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swers to nearly all problems are given in the back portions of the two volumes.

Illustrative examples are liberally provided.
The author wishes to express his appreciation for the extensive aid and numerous

suggestions given by Professor R. W. Brink. He is also indebted to many others for
their helpful comments, given both informally in conversation and more specifically

on paper.
J. M. H. O.

Carbondale, Illinois
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