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CHAPTER 1

Basic Concepts and
Two-Fluid Description
of Plasmas

The study of the interaction of intense laser light with plasmas serves
as an excellent introduction to the field of plasma physics. Both the lin-
ear and nonlinear theory of plasma waves, instabilities and wave-particle
interactions are important for understanding the laser plasma coupling.
Indeed, the field is a veritable testing ground for many fundamental pro-
cesses. Numerous plasma effects lmve now been observed in laser plasma

experiments, and many chall probl remmntobeunderstood
Since laser plasma i ions are of i to i from many
different fields of expertise, little prior background in plasma physics will

be assumed. Even for those with plasma experience, it can be very in-
structive and refreshing to begin from the basics and examine a field of
applications. Two levels of description will be used ~ a theoretical one
based on the two-fluid theory of plasmas and a numerical one based on
particle simulation codes. These two descriptions both reinforce and com-
pl one another. For ple, the particle simulations allow one to
both test the theory and develop some und ding of the li
effects.




1 Basic Concepts

1.1 BASIC PLASMA CONCEPTS

Let’s begin. A plasma is basically just a system of N charges which are cou-
pled to one another via their self-consistent electric and magnetic fields.
Consider then following the evolution of these N charges. Even neglecting
magnetic fields and electromagnetic waves, we must in principle solve 6N
coupled equations:

m;f;
E(r;)

GE(r)
%4
; m (ri —rj).

1l

Here m;, g; and r; are the mass, charge and position of the it® particle,
and E is the electrostatic field. This is clearly an unpromising approach
if a nontrivial number of charges is considered.

Fortunately a very great simplification is possible if we focus our at-
tention on collisionless plasma behavior. We can d pose the electric
field into two fields (E; and E,) which have distinct spatial scales. The
field E, has spatial variations on a scale length much less than the so-
called electron Debye length, which is the length over which the ﬁeld of
an individual charge is shielded out by the P of the ding
charges. E; rep the rapidly fi icrofield due to multipl
and random encounters (collisions) among ; the discrete charges. In con-
trast, E; represents the field due to deviations from charge neutrality over
space scales greater than or comparable to the Debye length. This field
gives rise to “collective” or coherent motion of the charges.

We thus have a natural separation into collisional and collective be-
havior. Not surprisingly, the collisional behavior becomes negligible when
the number of electrons in a sphere with a radius equal to the electron
Debye length becomes very large. To motivate this, let us carry out a sim-
ple ca.lculatlon of electron scattering by ions. As illustrated in Fig. 1.1,
we an with velocity v, mass m and charge e streaming
past an ion with charge Ze. The distance of closest approach is b. The
electron undergoes a change in velocity Av which is approximately

Av=f'—::(2—b),

which is just the maximum electrostatic force times the interaction time
(~ 2b/v). If we assume many randomly spaced ions, (Av) = 0, where
the brackets denote an average. However, there is a change in the mean
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square velocity. This average rate of change is given by (Av)? times the
rate of encounters, which is n; o v. Here n; is the ion density and o is the
cross-section of impact. S ing over all gives

%((Av)z) = /Z‘Rbdbn,-u(Av)z.

If we substitute for Av and integrate over impact parameters, we obtain

87 n; Z%%* In A

2

((Aav)®) = ‘T t,

where A is the ratio of the i and mini impact
ters (bmax and  bmin). The i impact p t

mately the electron Debye length, since other electrons in the plasma
shield out the Coulomb potential over this distance. The minimum im-
pact parameter is the larger of either the classical distance of closest
approach (bin & Ze? /mv?) or the DeBroglie wavelength of the electron
(bmin ~ h/mv), where K is Planck’s constant. Using the first, the distance
of closest approach, we have A ~ 9Np/Z, where ND is the number of
electrons in a Debye sphere. In particular Np = -1r n,)%e, where n, is
the electron density and Ap. is the electron Debye length This important
length will be derived later in this clmpter

It is c ient to define a ninety-d deflection time (tgoc) by the

dition that the root 8q change in velocity becomes as large
as the velocity. Hence

m2®
B0 = Srm 2 A

Averaging over a Maxwellian d ion of t! us
with a convenient measure of the mean rate (vgge = l/tgon) at which
electron-ion collisions scatter electrons through a large angle:

87 n; Z%* InA
o = ——— 1.1
o 6.4 m2v3 a1y

Here ve = /6./m is the electron thermal velocity and 6, is the electron
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Figure 1.1  An electron is deflected as it streams past an ion.

temperature. We note that

we  ZkhnA 1
wpe 10 Np'

where wp, is the electron plasma Erequency‘ which we will see is a fre-
quency ch istic of collecti motion.

The important point we wish to make is now apparent. The fine scale,
collisional interactions can be neglected to zeroth order in the parameter
1/Np. If we express the electron density in cm™ and the electron tem-
perature in eV, then Np = 1.7 x 10° (63/n.)"/2. Np can be very large
even in a rather dense plasma, provided the electron temperature is high.
For example, if n, = 10?! cm™® and 6, = 1 keV, Np =~ 1700. In the
collisionless limit (Np — 0o), the fine scale fluctuating microfields associ-
ated with discrete charges are completely negligible. The plasma behavior
can then be investigated by solving for the motion of the charges in the
smoothed or coarse-grained fields which arise from the collective motion
of large numbers of charges.

‘We will develop two parallel levels of description for the collective be-
havior. One level is analytical. Starting from the Vlasov equation, we will
derive moment (fluid-like) equations for the electrons and ions by averag-
ing over the velocities of the charges. This so-called two-fluid description
will then be used extensively to describe a wide variety of laser plasma
interactions. The second level of description is numerical: the use of par-
ticle simulati These simulati are a powerful tool for investigating
nonlinear effects and kinetic effects (effects which depend on the details
of the velocity distribution of the particles).
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1.2 THE VLASOV EQUATION

The natural starting point for describing the evolution of a collisionl
plasma is the Vlasov equation. We first introduce the phase space distri-
bution function f;(x, v,t). This is simply the function which characterizes
the location of the particles of species j in phase space (x, v) as a function
of time. Knowing the laws of motion, we can readily derive an equation for
fi(x,v,t). Since particles are assumed to be neither created nor destroyed
as they move from one location in phase space to another (no ionization
or recombination), fj(x,v,t) must obey the continuity equation:

Uiy 2w+ Lo =0. 12)

From the laws of motions, we have

X =V
V:ﬂ(E+VXB), (1.3)
mj c

where ¢; and m; are the charge and mass of the j™ species and E and
B are the ined fields iated with the collective i
Noting that x and v are independent variables and substituting Eq. (1‘3)
into Eq. (1.2), we arrive at the Vlasov equation:

of; of; q,( vxB o _
B Vige i b E+ — > =0 (14)

This equation simply says that f;(x(t),v(t),t) is a constant; i.e., the
phase space density is conserved following a dynamical trajectory. Such
an equation applies to each charge species in the plasma.

The Vlasov equation, augmented with Maxwell’s equations, is a com-
plete description of collisionless plasma behavior. In p ice, we need a
more tractable description which can be obtained by averaging over the
velocities of the individual particles. By taking different velocity moments
of the Vlasov equation, we can derive equations for the evolution in space
and time of the density, mean velocity, and pressure of each species. As
we will see, each moment brmgs in the next higher moment, generating an
infinite set of , we can for ly truncate
the series of equations by introducing ions about the heat flow.
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1.3 THE MOMENT EQUATIONS

Let us now derive the moment equations and motivate their truncation.
First, we note that the density (n;), mean velocity (u;), and pressure
tensor (gj) are determined by averaging the various moments of the phase
space distribution function over velocities:

i = / Fi(x,v,8) dv (15)

nju; = / v fi(x,v,t) dv (1.6)

E=m /(v —u;)(v —uy) fi(x,v,t)dv. (1.7)

In deriving the i we will supp: the subscript j,

since it is clear that these equations will apply to each charge species.
Averaging the Vlasov equation over velocity gives

B
/dv[% +v%{ +IE®+2= )%] =0. (18

The first two terms in Eq. (1.8) give

af _on
[o%-%
8, af
/dvv-a—i :/dvgu.'a—zi
= %-(nu).

The third term in Eq. (1.8) vanishes, as can be seen by integrating by
parts and noting that f — 0 as |v| — oo. Hence the first moment of the
Vlasov equation gives the continuity equation for the particle density:
n o
at x
The next moment of the Vlasov equation is

af af q vxBy af] _
/dvv[§+v~&+;(E+-c—)-a—;:| =0. (L10)

‘(nu) = 0. (1.9)
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The first term in Eq. (1.10) is straightforward:

/ dv v = 2 nu.
The second term gives

/dvvv~gx—f

I
Flo Flo
—~
T
<
<
<
<

This result is readily obtained by rewriting the integral as
E
dv(v-u+u)(v-u+u)f = o T nuu,
since [ (v —u) f dv = 0. Evaluation of the last term in Eq. (1.10) yields
vxB\ 0f _  ng uxB
JeovifEe+22). 3 - - (@ 25),

where we have integrated by parts. Collecting the above terms, we obtain
the equation of motion for the charged fluid:

a a3 ng uxB s B
a(nu)+$-(nuu)——r'—‘—(E+ =) - 2.
Itlsconvementt.orewnte the first two terms of Eq. (1. ll)usmgthe
and to that the p is ic, i.e.,

E = Lp where L is the unit dyad. Then

Bu du _ ng uxB 1 8p
n§+nu~&—;(E+ . )‘Eax (1.12)
Observe that each moment brings in the next higher one. The continu-

ity equation for the density involves the mean velocity; the force

for the velocity brings in the pressure. The next moment will give us an
equation for the pressure (energy density) which involves the heat flow.
Continuing, we would end up with an infinite set of coupled equations,
hardly a practical description.
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Fortunately, we can truncate the moment equations by making various
assumptions about the heat flow, which gives us a so-called equation of
sta,te The simplest assumpt:on is that the heat flow is so rapid that the

e of the ch d fluid is a In this case, we have the
lsotherma.l equation of state: p = n6, where the temperature 6 is a
constant. This equation of state, plus the inuity and force i

for the fluid, and Maxwell’s equations form a closed description.

The isothermal equation of state is appropriate when w/k < v,
where w and k are the freq 'y and wave ber characteristic of the
physical process being considered and v, is the thermal velocity of the
particles. In the opposne limit (w/k >> v;) we can simply neglect the
heat flow. This p leads to an adiabatic equation of state, which
we will now derive.

To obtain an ion for the p , we multiply the Vlasov equa-
tion by the kinetic energy and average over velocity:

e [ A+ B H] 0 0

ot

At this point, let us specialize to one-dimension to simplify the algebra.
The first term can be written as

m. 0 2gy = 10 2
—a/f(u-u-i-u) dv = 2m(p-f—nmu).
The next term in Eq. (1.13) gives

where Q = (m/2) (v —u)® f dv. The final term in Eq. (1.13) is simply
q9 2 a_f -
E/U Eaudv— nqukE.

Collecting terms, we obtain

18 2 , 38 18 3y, 9Q _ 114
§§(p+nmu)+§E(up)+§az(nmu)+az qruE. (1.14)
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A great deal of simplification results from the use of the lower moment
equations. In particular,

] (nmu"') _ mu® on Bu

a\Tz )T 2w T
Using Eqgs. (1.9) and (1.12), substituting into Eq. (1.14), and cancelling
terms gives o Q

L - S ,0Q _

5 tup T35 t2g =0 (1.15)

To obtain the adiabatic equation of state, we neglect the heat flow.
This assumes that 8Q/dz is much less than the other terms in Eq. (1.15).
For example, demanding that 80/8:: < Bp/at gives wp > kQ, where w
and k are a fi and istic of the process being
considered. Clearly Q < Qmax ~ n0v;, where v; is the thermal velocity.
Hence, to neglect heat flow it is sufficient to assume that w/k > v;.

With this assumption, Eq. (1.15) reduces to

dp [ o _
2 tugp +3pg =0, (1.16)

The continuity equation allows us to express du/dz as

du a a
£=—(§+ua—)lnn (117)
Substituting Eq. (1.17) into Eq. (1.16) gives

(8¢+u—)lnp - (§+u%)lﬂns=0'

(az a:) =o0. (1.18)

This equation shows that, following the plasma flow, p/n® = constant,
which is the adiabatic equation of state for motion with one degree of
freedom. This equation of state is readily generalwed to p/n? = consta.nt
where v = (2+ N)/N and N is the ber of d of fi




