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Preface

With the discovery of the theory of distributions, the role of Functional
Analysis in the study of partial differential equations has become increas-
ingly important. Not only is a proper functional analytic setting important
for the theoretical study of the well-posedness of initial and boundary
value problems but also for the construction of good numerical schemes
for the computation of approximate solutions. Numerical methods like the
Finite Element Method draw heavily upon the results of Functional
Analysis both for the construction of the schemes as well as their error
analysis.

It is thus clear that applied mathematicians must have a good back-
ground in Functional Analysis and its applications to partial. differential
equations. Such courses are absent from the curricula of most Indian
universities. One of the main reasons for this is the lack of suitable text-
books on which such a course could be based and it is this gap that the
present book is expected to fill. Indeed the material covered in this book
is not original and can be found distributed amongst several treatises,
texts or papers. The difficulty faced by teachers is the task of assembling
material suitable for an introductory course from an abundant literature.
The present book aims to provide such an introductory course on the
functional analytic methods used in the study of partial differential equa-
tions and is based on lectures given by myself at the Tata Iastitute of
Fundamental Research in the past few years.

The prerequisites for the use of this book are basic courses on Analysis
(theory of measure and integration, L-spaces, etc.), Topology and Func-
tional Analysis (Banach and Hilbert spaces, strong and weak topologies,
compact operators etc.). Apart from these requirements, every effort has
been made to keep the treatment as self-contained as possible. The inter-
dependence of the various chapters is as follows:

Chapter 1
|
Chapter 2
I
Chapter 3
54 =
Chapter 4 Chapter 5

The first chapter covers the main aspects of the theory of distributions
and the Fourier transform. The notion of distribution solutions to partial
differential equations is introduced. The second chapter studies the impor-
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tant properties of Sobolev spaces. These spaces form a natural functional
analytic framework for the study of weak solutions of elliptic boundary
value problems which is the topic discussed in the third chapter. Here we
study the existence, uniqueness and regularity of weak solutions of linear
elliptic boundary value problems. The general theory is illustrated by
several classical examples from physics and engineering. We also study
maximum principles and eigenvalue problems. The fourth chapter is
devoted to the study of evolution equations, i.e. initial and initial-boundary
value problems, using the theory of semigroups of linear operators on a
Banach space. After a brief introduction to the abstract theory, illustra-
tions via some standard partial differential equations of physics are
provided. The last chapter provides™an introduction to the study of semi-
linear elliptic boundary value problems from the point of fixed point
theorems, approximation methods and variational principles.

Comments at the end of each chapter provide additional information or
results not given in the text and also give important bibliographic
references. Each chapter is also provided with a selection of exercises
which are designed to fill gaps in the proofs of some theorems or prove
additional theorems or to construct examples or counter examples to
notions introduced in the text.

As the Tamil poet Avvai put it, one’s knowledge and one’s ignorance
roughly bear the ratio of a fistful of soil to the volume of the Earth. In the
same way it must be remembered that this book is just an introduction to
the study of the modern theory of partial differential equations and is by
no means an exhaustive treatment of the subject. The literature is very
vast and references to the important works and the frontiers of current
research are indicated wherever possible.

The material covered in the text is more or less a prerequisite for any
student aspiring for a good research career in applied mathematics whether
it be from the theoretical or computational point of view. This book
could thus be used for an M.Phil. or a pre-Ph.D. course in the applied
mathematics curriculum in Indian universities. In case the M.Sc. curriculum
provides a strong base in Analysis, Functional Analysis and Topology, it
could also be used for an elective course at that level.

The preparation of this manuscript was possible due to the excellent
facilities available at the Bangalore Centre of the Tata Institute of Funda-
mental Research and I thank the Dean, Mathematics Faculty of this
Institute for generously agreeing to extend these facilities for this purpose
and the Staff of the Bangalore Centre for their cooperation. I would also
like to thank my colleagues and friends for their help and encouragement.
In partlcular I wish to thank Dr. V. S. Borkar who egged me on to embark
on this project, Dr. M. Vanninathan who read portions of the manuscript
and helped me improve the same and Messrs. A. Patnaik, B. K. Ravi and
A. S. Vasudevamurthy who, in various ways, helped me during the pre-
paration of the manuscript. Finally I thank Ms. N. N. Shanthakumary for
her neat and careful typing of the manuscript. I am grateful to the
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personnel of Wiley Eastern Ltd. for their cooperation in bringing out this

volume. To my family I owe the moral support extended throughout the
execution of this project.

Finally, I wish to dedicate this book to the memory of my late father.

Bangalore, S. KESAVAN
August 1988



Notations"

I. Notations in Euclidean Spaces

Il

dist (x, A)
Q

Q2
r=oQ

9 cel

stands for the real line.

stands for the n-dimensional Euclidean space over R.

stands for the set of complex numbers. '

stands for the ith standard basis vector in R”.

=(X;...X,) is a vector in R” with coordinates x;, 1 < i< n.
is the Euclidean norm of x € R”.

is the Euclidean distance of x € R” from a subset 4 — R~.
stands for an open set in R".

stands for its glosure in R”.

stands for the boundary of Q.

means that ' is a relatively compact open subset of Q.

II. Function Spaces

C(2)
c@)
CHQ)

CQ)

c*(Q)
C*(Q)
D)

D
E®)
&'®)

S
Sl

is the space of continuous functions on Q.
is the space of continuous functions on Q.

is the space of k times continuously differentiable functions on
2.

is the space of functions in C¥®) which _together with all
derivatives possess continuous cé(tensions to 2.

A

= N CKQ). }
k=0

= N CK@).
k=0
is the space of functions in C*(2) with compact support in Q
(D = DR").
is the space of distributions on 2 (@' = 9'(R")),
=C*(2) (& = ER").
is the space of distributions With compact support in 2
(& = E'RM). :
is the Schwartz space of rapidly idecreasing functions in R”,

is the space of tempered distributions on R”.
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NOTATIONS

W »r(2) is the Sobolev space of order m for 1 < p <o with corm

ws

[|+lle, o, o and semi-norm ||, ,, o.

'P(R2) s the closure of 9(R2) in W™ r(Q).

Wm3(Q) =Hm(Q) with norm ||+ j|n, o and semi-norm ||, o.
We(@) =Hg(Q).

WO p(2) =Lr(R) with norm |-l 5, o

Wo2(Q) =L*Q) with norm |-|o, o.

IIL.
1.

General Remarks
In any normed linear space B(x; @) will stand for the open or closed
ball (depending on the context) centered at x and of radius a.
In any estimate or inequality the quantity C will denote a generic
positive constant and need not necessarily be the same constant as in
the preceding calculations.



Contents

Preface v
Notations ix
1 DISTRIBUTIONS i

1.1  Introduction 1
1.2  Test Functions and Distributions 4
1.3 Some Operations with Distributions 9
1.4 Supports and Singular Supports of Distributions 12
1.5 Convolution of Functions 17
1.6 Convolution of Distributions 22
1.7 Fundamental Solutions 29
1.8  The Fourier Transform 33
1.9 The Schwartz Space, S 36
1.10 The Fourier Inversion Formula 41
1.11 Tempered Distributions 43

Comments 45

Exercises 1 48

2 SOBOLEV SPACES : 51

2.1 Definition and Basic Properties 51

2.2 Approximation by Smooth Functions 357

2.3 - Extension Theorems 62

2.4 Imbedding Theorems 72

2.5 Compactness Theorems 81

2.6 Dual Spaces, Fractional Order Spaces and Trace Spaces &8

2.7 Trace Theory 95 :
Comments 103
Exercises 2 106

3 . WEAK SOLUTIONS OF ELLIPTIC BOUNDARY VALUE
PROBLEMS 111
3.1 Some Abstract Variational Problems 11]

3.2 Examples of Elliptic Boundary Value Problems 118
3.3 Regularity of Weak Solutions 137
3.4 An Example of the Galerkin Method 141



xii
3.5

3.6
3.7

4 INTRODUCTION TO SEMIGROUPS AND APPLICATIONS

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

CONTENTS

Maximum Principles 143

Eigenvalue Problems 147

Introduction to the Finite Element Method 152
Comments 160

Exercises 3 162

Unbounded Linear Operators 166
The Exponential Map 170
Co-Semigroups 172

The Hille-Yosida Theorem 178
Contraction Semigroups on Hilbert Spaces 188
The Heat Equation 195

The Wave Equation 199

The Schrodinger Equation 203
The Inhomogeneous Equation 205
Comments 208

Exercises 4 210

5 SOME TECHNIQUES FROM NONLINEAR ANALYSIS

5.1
5.2
5.3
5.4
5.5
5.6

Introduction 214

Some Fixed Point Theorems 215
The Galerkin Method 224
Monotone Iterations 227
Variational Methods 231
Pohozaev’s Identity 237
Comments 240

Exercises 5 243

APPENDIX 1 Partition of Unity
APPENDIX 2 The Topology on 9(2)
APPENDIX 3 Calculus in Banach Spaces
APPENDIX 4 Stampacchia’s Theorem

References

Index

166

214

245
248

BE ¥ B



ONE

Distributions

1.1 INTRODUCTION

The main aim of this book is to develop the basic tools of functional
analysis which will be useful in the study of partial differential equations
and to illustrate their use via examples. As a first step towards this, the
notion of differentiable functions must be generalized. When we study a
partial differential equation, we understand—in the classical sense—that a
solution must be differentiable at least as many times as the order ofthe
equation and that it must satisfy the equation everywhere in space (and
time). However such a point of view is very restrictive and several interest-
ing equations which model physical phenomena will fail to possess such
solutions and thus we will be prevented from studying mathematically such
physical situations. Let us consider a few examples.

Example 1.1.1 Consider the following equation:
um+uu, =0, xR, t>0 (1.1.1)

where the subscripts denote differentiation with respect to the correspond-
ing independent variable. This equation is known as Burger’s Equation
and is closely related to a class of partial differential equations known as
hyperbolic conservation laws. Let u(x, t) be a ‘smooth’ solution of (1.1.1)
satisfying an initial condition of the form

u(x, 0) = up(x), x € R (1.1.2)

where uy(x) is a given function of x. Let us now define a curve x = x(¢) in
the x-t plane by means of the ordinary differential equation

dgxf () = u(x(1), t). (1.1.3)

Along such a curve we have

du oudx
dt az+ax2?“"’+““‘“°

since u satisfies (1.1.1). Hence along each such curve, # = a constant. It
then follows from (1.1.3) that such curves are straight lines. These are
called ‘characteristic curves’ and the curve through the point (xo, 0) on the
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real line will have the form
x = Xo + ct, ¢ = uo(xo) (1.1.4)
and all along this curve u(x, t) = to(xo).
Now consider a smooth initial function uo as in figure 1.

‘Puo(x)

£
v

(o] 1
Fig. 1

The corresponding characteristic curves are shown in figure 2.

At /
/ \ -

(0] 1

Fig. 2
It is seen from this figure that, for instance, at the point P two character-
istic curves meet and hence the value of u at P is not even well defined.
Thus except for a short time, we cannot even expect the function to
be continuous! If we only wish to study classical solutions, such equations
cannot be tackled and we will not be able to study interesting physical
phenomena such as shock waves (which are very important in aeronautics).
We are thus led to the need of generalizing the notion of a solution of
partial differential equations which should eventually include discontinuous
functions being recognized as solutions (albeit in a weak sense). |}

Example 1.1.2 Let 2 C R? be a bounded open set. If Q is the region
occupied by a thin membrane fixed along the boundary 922 and acted upon
by a vertical force, then the displacement in the vertical direction is given
by a function u(x), x € Q, which satisfies a partial differential equation of

the form - it
—du = jf 1n
: u=0on 39} (b
where 4 is the Laplace operator defined by
du = u,x + uy,. (1.1.6)
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This is a partial differential equation involving the second order deriva-
tives of the function . However, in mechanics, what is more important is
that ¥ minimizes the strain energy functional

J(s) = %L [(;_;:)z & (gﬁ)z] dxdy — f,, fo dxdy (1.1.7)

amongst all ‘admissible displacements’ ». A fact that strikes us immediately
is that no second derivatives are involved in the definition of J! Thus in
looking for the equilibrium state of the membrane the space of ‘admissible
displacements’ need not involve functions which are twice differentiable
and in fact for several ‘reasonable’ data f, it is not correct to do so. Never-
theless we would like to know the connection between the problem (1.1.5)
and the minimizer u of the functional J. In other words though # may not
be twice differentiable in the classical sense we would like to say that it
still satisfies (1.1.5) in a weak sense.

Many computational schemes to approximate the solution of (1.1.5)
stem from the variational characterization described above.

The above examples are but few instances which motivate the need of
generalizing the notion of a solution of a partial differential equation,
which in turn motivates the need of generalizing the notion of differentia-
ble functions. In other words, we will study a larger class of objects—
called Distributions—on which we can define a (generalized) derivative and
wherein the usual rules of calculus will hold. Further, for smooth functions,
this new notion of a derivative must coincide with the usual one.

A rough idea as to how to set about realizing this class can be obtained
from the following discussion.

Let f € L*(R), the space of square integrable functions on R. It can be
shown that the space 9 of infinitely differentiable functions with compact
support in R is dense in L%(R). (By the support of a function ¢ : R - R (or
C) we mean the set

K={xER[$(x) # 0} (1.1.8)

which is always closed by definition.) Thus, since L(R) is a Hilbert space,
f is completely known once its innerproduct with each element of 9 is
known, i.e. when all the numbers

[ oo

are known. Now assume that f is continuously differentiable, with deriva-
tive f'. By integration by parts, we have

b= — 5 1.1.9

[are=—[er (1.1.9)

Notice now that the right-hand side of (1.1.9) does not involve the deri-
vative of f | Also notice that the operations ¢ — J.E f¢ and ¢ —> IR 1

are linear on §. Hence if we can define a suitable topology on &) which
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makes these operations continuous, we can define fas a continuous linear
Sfunctional on g and define f’ via the right-hand-side of (1.1.9) even when
[ is not differentiable as long as the integrals make sense. This is the pro-
cedure we will follow in the next few sections.

1.2 TEST FUNCTIONS AND DISTRIBUTIONS

Let ¢ be a real (or complex) valued continuous function defined on an
open set in R"”. The support of ¢, written as supp (¢), is defined as the
closure (in R") of the set on which ¢ is non-zero (cf. (1.1.8)). If this closed
set is compact as well, then ¢ is said to be of compact support. The set
of all infinitely differentiable (i.e. C*) functions defined on R” with com-
pact support is a vector space which will henceforth be denoted by 9(R")
or, simply, 4. We will now show that this class of functions is quite rich.

Lemma 1.2.1 Let f: R -> R be defined by

— =2 :
fx) = SXP( : )”;‘zg. ' (1.2.1)

Then fis a C* function.

Proof: We only need to check the smoothness at x = 0. As x 4 0 all deri-
vatives are zero. As x |, 0, the derivatives are finite linear combinations of
terms of the form x~! exp (—x~2), / an integer greater than or equal to

zero.
A simple application of "Hospital’s Rule shows that these terms tend to

zeroas x| 0. [§
We can use the above lemma to construct examples of elements of 9.

Example 1.2.1 Consider the function

exp (—a?/(a®*— x)), x| <a
$(x) = {0 (i (1.2.2)

Then a simple application of the preceding lemma shows that ¢ € 9(R)
and supp () = [—a, a].
More generally, define

S8 P PR 2 e
$(x) = {(e)xp( a*/(a | x| ))s’ i,xxllgaa (1.2.3)

’

where |x2=Z %2, x=(%1,..., %) ER". Then ¢& DR") with
i=1 3
supp (¢) = Ball centre 0 and radius a (denoted B(0; @)). 1

Example 1.2.2 This is a slight, but very useful, variation of the previous

example. Let e > 0 and set
ke~ exp (—€*/(e — |x]?), |x| < €
pe(x) = {0 o (1.24)

where
k-t = I ,XP (= 1/(1 — ) d (1.2.5)
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Then by (1.2.3), we know that p, € D(R") with supp (pe) = B(0; ¢), the
ball centre 0 and radius e. Further p. > 0 and

IR_ odx) dx = 1, (1.2.6)

For,

k
j L pdx = 5 j e (T — ) dx

i kf exp(—1/(1 — |x) dx = 1.
x| €1

Thus the functions pe, € >0, have smaller supports, but preserve the
volume contained under the graph. As € - 0, these functions are concen-
trated at the origin. They will be used repeatedly in the sequel and are
called mollifiers. [

A family of sets {E;};c;in R" is said to be locally finite if for every point
x, there exists a neighbourhood of x which intersects only a finite number
of the E;. We now quote, without proof, a very important theorem. For
complete details, see Appendix 1.

Theorem 1.2.1 (Locally Finite C* Partition of Unity). Let 2 be an open
set in R” and let @ = U 2, 2, open. Then there exist C* functions ¢;
ierl

defined on 2 such that
(i) supp (¢:) C &

(ii) {supp (¢:)}ieris locally finite
(iii) 0 < ¢i(x) < 1, for all i € I, and

v) Zg=1 1§
iel

Remark 1.2.1 Since given any x € L2, there exists a neighbourhood
which will intersect only a finite number of the sets {supp (¢)}, it follows
that ¢;(x) = O for all but finitely many i. Thus the sum in (iv) above is in fact
a finite sum and is thus well defined. The name partition of unity is self-
explanatory: the constant function 1 is partitioned into C* functions
whose support can be controlled. |}

Corollary Let K be a compact set in R". Then there exists a ¢ € DR")
such that ¢ = 1 on K.

Proof: We consider a relatively compact open set U containing K. Now
consider the covering of R” consisting of {U, R™\ K} and the partition of
unity subordinate to this cover. Let ¢ and ¢ be non-negative C® functions
with ¢ + ¢ = 1, supp (¢) C U and supp (¢) C R"™\K. Thus p=00onK
and hence ¢ = 1 on K. Also supp (J)c UC U which is compact. Thus

s DR". B
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The function ¢ constructed above is called a cut-off function with respect
to the compact set K.

We have thus established that the class 9, also called the space of test-
functions, is well endowed with functions. If Q is any open set in R", we
can still talk of the space of C” functions with compact support, the
support being contained in Q. This space will be denoted by D(£).

We will now provide 9(£) with a topology which will make it a topo-
logical vector space. In fact, for the development of the theory, we will
not need a complete description of the topology; we will only need to know
what are convergent sequences in 9)(£2). Hence we will abstain, for the
moment, from describing this topology and defer this task to Appendix 2.
We will just define convergent sequences in 9(£2).

Definition 1.2.1 A sequence of functions {¢,} in (L) is said to converge
to 0 if there exists a fixed compact set K C £ such that supp (¢m) C K for
all m and ¢,, and all its derivatives converge uniformly to zero on K.

As indicated in Section 1.1, we will generalize the notion of a function
by considering linear functionals on 9 (R) which are continuous with res-
pect to the above mentioned topology.

Definition 1.2.2 A linear functional 7 on 9(R) is said to be a distribution
on Q if whenever ¢,,— 0 in 9(R2), we have T(¢,) — 0. i

The space of distributions, which is the dual of the space of test-func-
tions, is denoted by @'(2). In case 2 = R", the symbol g’ will also be
used. We now proceed to give several examples of distributions.

Example 1.2.3 A function f: 2 - R (or Q) is said to be locally integra-
ble if for every compact set K C £,

I If I< +eo. (1.2.7)
K

For instance any continuous function is locally integrable. Another exam-
ple of a locally integrable function (on R2) is r-! where r = |x]. If B is the
ball of radius € centred at the origin, then

€ (2
J. 1=‘[ lelrd(?dr,
BT oJo 7
which is finite.

Given a locally integrable function f, define Ty : D) - R (or C) by
Ty(¢) = j Qf«ﬁ- (1.2.8)

Clearly T is a linear functional on 9 and it is easy to verify that it is a
distribution.

If fand g are two locally integrable functions such that f= g a.e. therr
it is obvious that Ty = T,. In particular if f= 0 a.e., it defines the zero



