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Preface to the First Edition

When we began to consider the scope of this book, we envisaged a
catalogue supplying at least one abstract definition for any finitely-
generated group that the reader might propose. But we soon realized
that more or less arbitrary restrictions are necessary, because interesting
groups are so numerous. For permutation groups of degree 8 or less
(i.e., subgroups of &), the reader cannot do better than consult the
tables of JosepHINE BurNs (1915), while keeping an eye open for
misprints. Our own tables (on pages 134—142) deal with groups of low
order, finite and infinite groups of congruent transformations, symmetric
and alternating groups, linear fractional groups, and groups. generated
by reflections in real jdean space of any number of dimensions.

The best substitute for a more extensive catalogue is the description
(in Chapter 2) of a method whereby the reader can easily work out
his own abstract definition for almost any given finite group. This
method is sufficiently mechanical for the use of an electronic computer.

There is also a topological method (Chapter 3), suitable pot only
for groups of low order but also for some infinite groups. This involves
choosing a set of generators, constructing a certain"graph (the Cayley
diagram or DEHNsche Gruppenbild), and embedding the graph into
a surface. Cases in which the surface is a sphere or a plane are described
in Chapter 4, where we obtain algebraically, and verify topologically,
an abstract definition for each of the 17 space groups of two-dimensional
crystallography. :

In Chapter 5, the fundamental groups of multiply-connected surfaces
are exhibited as symmetry groups in the hyperbolic plane, the gene-
rators being teanslations or glide-reflections according as the surface
is orientable or non-orientable. :

The next two chapters deal with special groups that have become
famous for various reasons. In particular, certain generalizations of the
polyhedral groups, scattered among the numerous papers of G. A. MILLER,
are derived as members of a single family. The inclusion of a slightly
different generalization in § 6.7 is justified by its unexpected connection
with SHEPHARD's regular complex polygons.

Chapter 8 pursues BRAHANA’s idea that any group generated by
two elements, one of period 2, can be represented by a regular map or
topological polyhedron.




VI : Preface

In Chapter 9 we prove that every finite group defined by relations

of the form

R} = (R,R)"=E l=si<j=sn)
can be represented in Euclidean n-space as a group generated by re-
flections in » hyperplanes. Many well-known groups belong to this
family. Some of them play an essential role in the theory of simple Lie
groups.

We wish to express our gratitude to Professor REINHOLD BAER for
inviting us to undertake this work and for constructively criticizing
certain parts of the manuscript. In the latter capacity we would extend
our tharks also to Dr. PaTrRIcK Du VAL, Professor IRVING REINER,
Professor G. DE B. RoBiNsoN, Dr. F. A. SHERK, Dr. J. A. Topp and
Professor A. W. Tucker. We thank Mr. J. F. PETRIE for two of the
drawings: Figs. 4.2, 4.3; and we gratefully acknowledge the assistance
of Mrs. BERYL MOSER in preparing the typescript.

University of Toronto ‘ H.S. M. C.
University of Saskatchewan W.0. ]J. M.

February 1957

Preface to the Second Edition

We are grateful to Springer-Verlag for undertaking the publication of
a revised edition, and to the many readers of the first edition who made
suggestions for improvement. We have added to § 2.2 a brief account
of the use of electronic computers for enumerating cosets in a finite ab-
stract group. In § 6.5, the binary polyhedral groups are now more fully
described. In § 6.8, recent progress on the Burnside problem has been
recorded. New presentations for GL(2,p) and PGL(2, p) (for an odd
prime p) have been inserted in § 7.5. In § 7.8, the number of relations
needed for the Mathieu group My, is reduced from 8 to 6; a presentation
is now given also for M,,. Several new regular maps have been added to
Chapter 8. There are also some improvements in § 9.7 and Table 2,
as well as numerous small corrections.

University of Toronto H.S:M.C.
McGirLL University W.0.J. M.

September 1964




Preface to the Third Edition

Although many pages of the Second Edition have been reproduced
without alteration, there are about eighty small improvements in addi-
tion to the following. The section on BURNSIDE’s problem (§ 6.8) now
includes LEECH's presentation for B, and the important results of
ApjAN and Novikov on B,, ,, for large values of #. The section on LF (2, p)
(§ 7.5) has been almost entirely re-written because the number of
relations needed to define this group no longer increases with p; the
new presentations are surprisingly concise. The section on the MATHIEU
groups has been improved in a similar manner. :

Until recently, the deduction of 6.521 from 6.52 (page 68) had been
achieved only by separate consideration of the separate cases. A general
treatment, along the lines of Chapter 3, has been given by J. H. CoNway,
H. S. M. CoxeTER and G. C. SHEPHARD in Tensor 25 (1972), 405—418.
An adequate summary of this work would have unduly increased the
length of our book. For the same reason we have scarcely mentioned the
important book by MAaGNUS, KARRASS and SoLITAR (1966).

January 1972 H.S.M.C. W.O:.J.M.

Preface to the Fourth Edition

‘“Apart from many small corrections, the principal change from the
Third Edition is a revised Chapter 2. The process of coset enumeration -
is /gow explained more clearly, and is applied to the problem of finding
a presentation for a subgroup. To avoid lengthening the chapter, we have -
transferred four worked examples to the Appendix on pages 143—148.

~“Another innovation (at the end of page 79) is J. G. SUNDAY’s combi~
natorial interpretation for the number g in the symbol H{g}m for a
regular complex polygon. Table 5 (on page 137) now includes a sur-
prisingly neat presentation for the alternating group. of degree 7.

U‘xiiversity of Toronto o H.S. M C.
McGiLL University ' 5 vd bats . W.0. J M.

May 1979
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Sl ot ) qo1 ioiliboos S i .Chapter 1

= Cyclic, Dicyclic and Metacyclic Groups

' After briefly defining such fundamental concepts as generators,
factor groups and direct products, we show ‘how an automorphism of
a given group enables usto adjoin ‘a new element so as to obtain'a larger
group; e.g., the cyclic and non-cyclic groups of order 4 yield the quatern-
ion group and the tetrahedral group, respectively. Observing that the
standard treatises use the term metacyclic group in two distinct senses,
we exhibit both kinds among the groups of order less than 32, whose
simplest known abstrgct definitions are collected in Table.1.

Opinions seem to e evenly divided as to whether products of group
elements should be read from left to right or from right to left. We
choose the former convention, so that, if A and B are transformations,
A B signifies the transformation 4 followed by B.

" 1.1 Generators and rélations. Certain elements Sy, Sp, < +» S, of 2
given discrete group &, are called a set of generators if every element of (€]
is. expressible as a finite product of their powers (including negative
powers). Such a group is conveniently denoted by the symbol

» {51, Sz, o0 ey S”}.
. When m= 1, we have a cyclic group

whose order ¢ is the period of the single generator S. If ¢ is finite, S
satisfies the relation S? — E, where E denotes the identity element.
" A set of relations s

'b,-ug‘(‘sl,sz,;-- ,S,,J=E . (k=1: 2:-°':S)r : (1'11)

satisfied by the generators of ®, is called an abstract definition or presen-
tation of ® if every relation satisfied by the generators is an algebraic

consequence: of these particular relations. For instance, if ¢ is finite,

S? — E is an abstract definition of €,. It is important to remember that,

in such a context, the relation S? = E means that the period of S is

exactly ¢, and not merely a divisor of ¢. This is sometimes expressed by

saying that the relation is not merely “‘satisfied’’ but “fulfilled” (see
MiLLER, BLICHFELDT and DICKSON 1916, p. 143).




ST 1.2 Factor groups

Returning to the general group @, defined by 1.11, let § be another
group whose abstract definition in terms of generators Sty .. T,
is given by the relations

M(Ty, Ty, ..., T)=E (i=1,2,...,9. (1.12)

Then it is known that a necessary and sufficient condition for @ to be
isomorphic to § is the existence of relations

T, =T4S,S,,...,8,) G=12..., n), (1.13)
S;=8:(7,, Tp,..., T,) (¢=12...,m)), (1.14)
such that 1.11 and 1.13 together are algebraically equivalent to 1.12
and 1.14 together (CoXxETER 1934b). For instance,
RS —F (1.15)
and .
SB=T=8S-1TST=E (1.16)
are two possible presentations for €g, since the relations

R=E S=RS, T=R?
are equivalent to
B =T2=8S1TST=E, R=ST.

1.2 Factor groups. Let @'~ {R,, R,,..., R,} be defined by the
s + 7 relations
gk(Rl,Rz,...,R~)=E (k=1,2,...,s+r).

The correspondence
S;—~> R, =10 ... .m)

defines a homomorphism of @& (defined by 1.11) onto &’. The elements

851, S .. .1 S,) (k=s+1,...,s47) (121)

of & all correspond to the identity element ol

: &(R,Ry...,RY=E (k=s+1,...,5+7)

of @&'. Hence the kernel of the homomorphism is the normal subgroup

R W (S S ains Sd W) . dk=541. ... 81+ 1),

where W runs through all the elements of @. In fact, 3 is the smallest

normal subgroup of (¢ that contains the elements 1.21, and it follows that

RGN CTh) S

In other words, the effect of adding new relations to the abstract de-

finition of a group @, is to form a new group &’ which is a factor group
of @. . :




1.3 Direct products : 3

In particular, the effect of adding to 1.11 the relations
S;18;1S;S; =E (6,7=1,2,...,m)

is to form the commutator quotient group of &, which is the largest Abelian
factor group of §.

~ Every group with m generators is a factor group of the free group Fm,
which has m generators and no relations (REIDEMEISTER 1932a, p. 31).
Apart from some special considerations in § 7.3, p. 88, we shall not
attempt to describe the modern development of the theory of free
groups, which began with the remarkable theorem of NIELSEN (1921) and
SCHREIER (1927) to the effect that every subgroup of a free group is free
(see especially MAGNUS 1939; BAEr 19456; CHEN 1951, 1954; Fox 1953,
1954; Kurosck 1953, pp. 271—274; M. HarL 1959, p. 96).

1.3 Direct products. If two groups @, ©, defined by the respective
sets of relations 1.11, 1.12, have no common element except E, and if
all elements of ® commute with those of §, then the m + n elements S;
and T; generate the direct product

GXx9.
Clearly, a sufficient abstract definition is provided by 1.11, 1.12, and
S{‘T,‘ls,-T,-=E (=1...,m7j=1...,n).
However, in many cases the number of generators may be reduced and

the relations simplified. As an example, consider the cyclic groups €4
and G@,, defined by the respective relations

S3=E and T!=E.

Their direct product €5 €, of order 6, has the abstract definition 1.16;
but it is also generated by the single element R = ST and defined by
the single relation 1.15, which shows that 6, % €, = €4 More generally,
the direct product of cyclic groups of orders ¢ and 7 is an Abelian group .
€,%E,, of order g7, which is cyclic if ¢ and 7 are coprime: '
¢, x€,~¢,, (g.7)=1.
Still more generally, if #,¢,... are distinct primes, any Abelian

group of order A

¢ ...

GpaXGpX - -+

is a direct product

of Abelian p-groups (BUrnsiDE 1911, pp. 100—107), and every such :
p-group is a direct product of cyclic groups:

@,a e g (E,u.x&',a.x e




4 1.8 Direct products

where iy S
. . o =0 -+ Oy 4« + o,

This p-group is described as the Abelian group of order p* and type
(6eq, %, . . .); in particular, the direct product of & cyclic groups of order P
is the Abelian group of order p* and type (1,1, ..., 1): ' ,
B & S ot PR s i Py gt 3
Combining -the above results, we see that ew ry finite Abelian group
is-a direct product oi cyclic groupsd: saii b ol $gms

The infinite cyclic group €., is generated by a single element X with-
out any relations. Thus it is the same as the free group ¥, on one genera-
tor. The inverse X1 is the only other element that will serve as'a genera-
tor. The direct product i : 245

; €L =€ xEC, g i
of two infinite cyclic groups is defined by the single relation ' '
_— ; XYY e " (L.31)
Its finite factor groups are obtained by adding relations of the type
S ‘ x* Y° =E;
For example, in the Abelian group
” XY = XY =F, XY= YX, (1.32)

we have’ :
; PO X Yb, Xc‘ LB ch £ X—b’,
and therefore X* = E, where n — b2 + e, S_uppose (8, c) - =.yb —fe.
Then X4 is a power of Y, namely =
- XL Xpa Lty by, o I Saubos

Also = : e
.Yb =g %re o8 Y—c(pb-!-'yc)/d A Yb'—rnld,

Y= Xt = YUyl _ yortad
Since (8,) = 1, the period of ¥ divides n/d, and any element of the

group is expressible as ;
- - s O=x<d, 0=<v<n/d).

Consider the direct product €4 X €, in the form
7% = Y —FE ZY =Y2Z.
The element X = Z Y~+7)/4 ga¢isfies X'V — YV X and
Xbye — Zby{=bo+ye) +clvb—po)}ja — Zby—Bnld __ E,
XY — Z-e Yo+ -otyo—pelid _ g-cymid _ .




. 1.4 Automorphisms )

Hence the group {X, Y} of 1.32 is G‘XG,,,, the direct product of cyclic
groups genetated by
Xy(ﬁbwc)ll and Y

% can be shown sxmllarly that the Abelian group
X‘= = XY, XY=YX
.
& Y=2"2=X XYZ=2YX=E. ;v akh88)
is €;% €, the direct product of cyclic groups generated by
X YyP+vld gnd Y,
where ¢ = 5® + bc + ¢® and d = (b, ¢) = yb — Bc (FRUCHT 1955, p. 12).

1.4 Automorphisms. Consider again the group & o~ {Sl, Sz, el
defined by 1.11. Suppose it contains m elements Sl, Sz, ...,S,, which
satisfy the same relations S '

: g,,(s;,sz,.. s‘,,) i E A0
but do not satisfy any further relations not deduc:ble from these. Then
the correspondence

SereStiis (6.7 l, 2, it (1.41)
defmes an automorphism of ®.

One fruitful method for deriving a larger group &* from a given
group ® is to adjoin a new element T, of period ac (say), which trans-
forms the elements of @ according to an automorphism of period c.
If we identify 7° with an element U of penod a in-the centre of @,
left fixed by the automorphlsm, the order of &* is evidently ¢ times that
of ®. If the automorphism is given by 1.41, the larger group is defined
by the relations 1.11 and. : o]
T-ls T= s;, £ = . (1. 42)

This procedure is easily adapted to infinite groups Although ¢ may
be infinite, ® is still a normal subgroup of index ¢ in @*.

“In the case of an smner automorphism, @ contains an element R
such that, for every S in @,

RISR= FISTF;
i.e., TR1S = ST R1. Thus the element
Z # TR = RAT

of @* commutes with every element of &. The lowest power of Z that
belongs to @ is Uy ze— UR",

of period b, say. This element V, like Z, commutes with: every ele-
ment of @; since it belongs to @, it belongs to the centre.




6 e o 1.6 Some well-known finite groups

If (b,¢c) =1 (for instance, if b is prime to the order of the centre,
as in CoXETER 1939, p. 90), consider integers 8, y, such that

yb—pBec=1.
Instead of adjoining T to @, we could just as well adjoin Z = TR-1,
or adjoin

ZVP =7V the = zn,
whose cth power is
27" =y®=F
(since V® = E). Hence in this case
G* =~ GxGC,, (1.43)

where €, is the cyclic group generated by Z7.

1.5 Some well-known finite groups. The cyclic group €,, defined by
the single relation
S'=E, (1.51)

admits an outer automorphism of period 2 which transforms every ele-
ment into its inverse. Adjoining a new element  R,, of the same period,
which transforms @, according to this automorphism, we obtain the
dihedral group D, of order 2g¢, defined by 1.51 and

RiSR, =S B =
that is, v
S'=R} = (SR,)’ =E. (1.52)

The same group D, is equally well generated by the elements R, and
R, = R,S, in terms of which its abstract definition is
Ri=R= (R,R)!=E. (1.53)
The “even” dihedral group D, defined by 1.63 with ¢ = 2m, has
a centre of order 2 generated by Z = (R, R)™. If m is odd, the two
elements R, and R =R,Z satnsfy the relations

R'=R'= (R,R)"=E,
so that {R,, R} is ®,,,"and we have .
Dy 22 XD, (modd). (1.54)

Since Vg, (7 0dd) can be derived from ®,, by adjoining R,, which
transforms ®,, in the same manner as R, we see that 1.54 is an example
of 143 (Witha =b=1,c=2f=y=—1,T= R,,U Y =E).

-When m = 1, 1.64 is the four-group

Qag €, XD, == €, XE,,




1.6 Dicyclic groups 7

i eaied Ri=R= (R,R)'=E.

In terms of the three generators R;, R, and R, = R;R,, these relations
‘become

R:=R:=R}=RyR,R,=E. - (1.556)
In this form, D, clearly admits an outer automorphism of period 3 which
cyclically permutes the three generators. Adjoining a new element S
which transforms ®, in this manner, we obtain a group of order 12
defined by 1.65 and
; S8 =E, STR,S'=R; @ =1.,92).

The same group is generated by S and R, in terms of which it h&s the
abstract definition
@ . $*=R:=(SR,)*=E. (1.56)

Since the permutations S = (12 3) and Ry = (1 2) (3 4) generate the
alternating group ¥, of order 12 and satisfy the relations 1.56, we con-
clude that the group defined by these relations is %,. The above deri-
vation shows that %, contains D, as a normal subgroup.

91, is equally well generated by S and U = S~1R,, in terms of which
its definition is

S} =U%=(SU)®=E. (1.57)
Clearly, %, admits an outer automorphism of period 2 which inter-

changes the generators S and U. Adjoining such an element T, we
obtain a group of order 24 defined by 1.57 and

T*=E, TST=U." (1.58)
In terms of the generators S and T, this group is defined by
SB=T:=(ST)*=E. «(1.59)

Since the permutations S = (2 34), T = (1 2) generate the symmetric
group &, of order 24 and satisfy 1.59, we conclude that the group defined
by these relations is ©,. In terms of the generators S and U=S7T,
- B, is defined by =
S=U'=(SU)P=E.

1.6 Dicyclic groups. When g is even, say ¢ = 2m, the automorphism
S — S-1of €, can be used another way. Adjoining to \

_ ‘ ' S —F (1.61)
a new element T, of period 4, which transforms S into S—! while its
square is S™, we obtain the dicyclic group (2, 2, m), of order 4m, defined

by 1.61 and
=S T1ST=S"
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Since the last relation may be written as (ST)* = T*%, S and T satisfy
(== T (1.69)

" “To show that these two relations suffice to deﬁne'(2, 2, m), we
‘observe that they imply ‘) 3
S R=T2T T =T715"T = (THASD™ = S™

which is 1.61 (CoxETER 1940c, p. 872; cf. MILLER, BLICHFELDT and
Dickson 1916, p. 62). i ians

In terms of the three generators S, T, and R ='ST, (2, 2, m) is
defined by the relations ' :

®r in terms of Rand T alone:
R=Te(RID® i)

Of course, the éymbol (2,2, m) could just as well have been written
as (m, 2, 2) or (2, m, 2). Other groups (}, m, » ) will be discussed in § 6.5.
1.7 The quaternion group. The smallest dicyclic gfoup"
22 R (2,22),
called the guaternion group, is defined by S2 = T2 = (ST)2 or
R®=S*=T?=RST. ] ! i)
Note the resemblance to the famous formula = :
S P=P =P =ijk=—1
of HAMILTON (1866, p. 446).
£ is the smallest Hamsltonian group, that is, it is the smallest non-
Abelian group all of whose subgroups are normal. In fact, the finite
Hamiltonian groups are precisely the groups of the form

where ¥ is an Abelian group of odd order, and % is an Abelian group
of order 2™ (m = 0) and type (1,1,...,1) (DEDEKIND 1897: HirToN
1908, p.177; CARMICHAEL 1937, p. 114; ZAssENHAUS 1958, p. 160;
Scorza 1942, p. 89). equrors stiavaid 8

£ is also the smallest group of rank 1, that is, it is the smallest non-
Abelian group all of whose proper subgroups are Abelian. The groups
of rank 1 have been investigated by MILLER and MoRENO (1903),
ScaMIDT (1924) and REDET (1947). REDET showed that, apart from £,
every such group belongs to one of three well-defined families. It thus
appears that {) is the only finite non-Abelian group all of whose proper
subgroups are Abelian and normal. = -
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W ’Meydbmﬂc’dkmpl. H (q, )-—1 the cycht:group
:lblsdmltsananﬁmoqihm

341 aild & 5 SWlw N sgElige viiasbive U7 Lo o e (181)‘
whonpuiodautheexpomttowhichrbelongsmoduloq,sothat e
: fal(modq)

1% § £ 0 % Y :
&'e dggve a group of order qc by ad)ommg a new element T of penod
ac (vhereadivndabothqmdf—- 1), such that

_ T"S T=% s S,
Wntmg m= q/a, we have the abstract definition
S*=T°'=U, U*=E, T'ST=S (1.82)

(implying U’ = S™ = (T 'ST)™= TAUT = U) for this group of order
mac. (When ¢ =2 and 7 = —1, the group is dihedral or dicyclic accor-
asa = lora= 2) ;

S€ rehtlons can be sxmphﬁed if

(@, m) =1.

For if ya + am = 1, we have : ,
(S SHS T = ST == (S T°7,

so that 1.82 is generated by S; = S$* and 7, in terms “of which it has
the abstract definition

SP = T% = E, T7'S;T = 5i-
Droppmg the subscript, we are thus led to consider the group
SHLETe E E TS T ="y, (1.88)

of order mn, derived from €,, by adjoining 7, of period #, wluch trans-
forms @,, according to the automorphism 1.81, of period ¢. The new
feature is that we no longer identify 7¢ with an element of €,,. Since

S*=T"ST* =S5,
the consistency of the relations 1.83 requires : _
: ¥ =1 (mod m); (1.84)
ie, nmustbeamultxpleoftheexponent towhxchrbelongsmodulom
'(CAnmanxL 1937, p. 176). T!ms 1.88 is a factor group of
: . : T K TS TS - HTGUTI8E)

(where v may be. posutlve or negatlve) The group 1.85 is infinite if
7" = 1, and of order
nelrt =1




