


High Level

COBOL
Programming

Gerald M. Weinberg
Ethnotech, Inc.

Stephen E. Wright
Richard Kauffman
Martin A. Goetz
Applied Data
Research, Inc.

Winthrop Publishers, Inc.

Cambridge, Massachusetts



Library of Congress Cataloging in Publication Data
Main entry under title:

High level COBOL programming.

(Winthrop computer systems series)
Includes bibliographical references.

1. COBOL (Computer program language) I. Weinberg,
Gerald M.

QA76.73.C25H53 001.6’424 77-599
ISBN 0-87626-329-5

© 1977 by Winthrop Publishers, Inc.
17 Dunster Street, Cambridge, Massachusetts 02138

All rights reserved. No part of this book may be
reproduced in any form or by any means without
permission in writing from the publisher. Printed in
the United States of America.

1098765432



High Level
COBOL
Programming



Preface

SHOULD YOU BUY THIS BOOK?

If you are reading this preface, chances are you are trying to decide
whether this book is worth reading, or buying, or using as a textbook.
We shall try to give you the information you need to make that decision.

The title is of some help. COBOL means this book is aimed at the
community of people who solve business problems using COBOL in
some way. “High level” means that it is not another introduction to
COBOL. If you have never written a COBOL program, or managed the
writing of one, this book is not for you—at least, not yet. Take an in-
troductory COBOL course, or read one of the hundreds of introductory
texts; after that, we shall be most pleased to have you back.

The one other thing you need to know about this book is captured
in one phrase used above—*‘solve business problems.” Though we have
perhaps lost sight of it in the muck and mire of day-to-day programming,
what computers are really useful for is solving business problems. The
computer, the COBOL language, and each individual program are merely
means we employ to solve business problems. Unhappily, they often
seem to be a means of creating business problems.

If you are attempting to solve business problems with the aid of
computers and, more especially, COBOL, this book is for you. If you
are, in the process, creating more business problems than it seems to be
worth, this book is especially for you. If you are a student, hoping to
someday solve business problems with the aid of computers and COBOL,
this book is for you, too—though you may not appreciate the full nature
of the problems that it addresses. If you have a good teacher, he or she wi!
be able to fill you in about why such a book is necessary—that is, why
there is more to solving business problems than writing COBOL pro-
grams.

That’s really all there is to deciding whether to use this book, other
than taking a look at the way it is written to see whether you like our
approach. Inside, you’ll find that we are not trying to tell you what to
think, but are giving you some ideas about how to think when you are
trying to solve business problems with COBOL. We’re also trying to
show you what to think about. We’ll direct your attention to some
factors you may have been excluding from your thinking about pro-
gramming. As we do this, we’ll draw upon thoughts that others have
had and put into practice with considerable success. No doubt you may
have already tried some of them and can learn from your own experi-
ences. Once you’ve added what we have to say to your own store of
experience, you may find that you want to change the way you go

XVII



Xviii

Preface

about solving business problems. That’s what we hope, and we’d like to
hear from you as it happens.

HOW TO USE THIS BOOK

This book has an unusual organization—you must start reading at the
front and continue page by page to the back!

While this structure initially may not seem particularly curious,
we have to warn those nontechnical people who might be tempted to
crack the book somewhere in the middle and quickly decide it is not
for them. This book is for all people involved in the development of
COBOL programs—from top management on down. Although not all
people will read all the way through from front to back, everyone does
need to start in the front. As the going gets more technical, some may
drop out along the way—but we hope not before they learn that there
is an inescapable technical dimension to managing successful COBOL
programming.

Conversely, there is an inescapable business dimension to writing
successful COBOL programs—so the technical people should not skip
the first part of the book. In a way, the entire book is a,bout the inter-
weaving of technical and business questions. Managers must be willing
to bear with us through some demonstrations of why their best-laid
plans can be sabotaged by poor attention to technical details. On the
other hand, programmer/analyst types are going to have to learn more
about how their work fits into a larger world than MOVE CORRE-
SPONDING or GO TO DEPENDING ON.

Everyone, therefore, will benefit from reading this book as we have
said—from the front to the back. They might benefit even more if they
get together and discuss what they have read.

On the other hand, we have no illusions about the importance of
our book in the eyes of the typical reader. Ou . business has always
been characterized by ‘“busyness,” so we have added a few features for
the harried programmer or executive. First of all, we have provided a
generous diet of subtitles to assist the reader in skipping over parts
of no immediate interest. The subtitles will also help the reader who
is interested, but cannot spend enough time at one stretch to read an
entire chapter, or even a section. Usually, the material under one sub-
title is readable on its own, without strong reference to the preceding
material.

Second, we have enclosed some of the most technical material in
boxes to indicate that it can be skipped without any real loss of con-
tinuity—unless you are interested in the technical points in themselves.
Skipping the boxes should shorten the reading time and raise the in-
terest level for the nontechnical reader. Even the technical reader may
choose to skip the boxes on the first pass.

Third, the organization of the book should make it easy to refer
back to some important point. The Contents is a good guide, but don’t



Preface Xix

forget the Index in the back. Also in the back are some appendixes
containing particularly technical material for those who want to go one
level deeper into technical matters.

ON THE USE OF ADR SOFTWARE PRODUCTS

In order to demonstrate the effective interweaving of technical and
business dimensions in the development of COBOL programs, we need
to discuss the role of software tools such as a source library system and
a COBOL preprocessor. We particularly need a macropreprocessor to
attain our higher level without worrying about burdensome details that
might tax the patience of the less technical reader.

Because several of the authors are from Applied Data Research
(ADR), MetaCOBOL® and The LIBRARIAN® are available to us, and
have been reasonably well tried. We do not wish to imply that there are
no other preprocessors or source library systems, nor that others are
without merit. The choice of tools—made or purchased—is beyond the
scope of this book, and should be left to the individual installation.
What we have done is demonstrate the use of tools in ways that can
reasonably be adapted to similar tools—or even (though with somewhat
more clerical effort) to systems without such tools at all.

A COBOL macropreprocessor enables us to experiment with and
evolve new logical structures and introduce them to the COBOL com-
munity without waiting five years before the next language revision.
Because we use software tools, we separate out the purely clerical fac-
tors in changing to new structures, so we present our readers with a
vision of what they may attain by pursuing these directions. We believe
that these directions should be pursued, and that tools will help. That
is the main emphasis of this book.

Because of our ADR orientation, there may seem to be another
emphasis—to buy or license ADR products. Although we would be happy
if that should happen, we must not let that pleasant possibility intrude
on our main message. Consequently, we have attempted to minimize
direct reference to ADR products by name, except in the appendixes
that describe those products explicitly. In the text, we shall refer to
“our preprocessor,” “our development library system,’’ and so forth.
We have taken liberties with the precise syntax and other features of
these ADR products whenever we felt that:

1. precision would interfere with reader comprehension; or
2. the particular features were not, perhaps, as we would like them
to be.

In short, we hope that the use of ADR software products contributes
to, rather than detracts from, the attainment of our major goal—which
is to help our readers improve all aspects of their COBOL programming.



Acknowledgments

Material for this book has come from too many sources to name individ-
ually. Each of the COBOL examples—good and bad—has come from a
real COBOL program from a real business, either an ADR user or an
Ethnotech client, except where otherwise noted. We wish to thank all
these anonymous programmers, as well as the hundreds of other pro-
grammers and managers with whom we have discussed the problems in
thisbook. Essentially, all the ideas presented here are distilled from their
practical experience at solving problems on the job.

In order to ensure the quality of the book, all the material has been
submitted to extensive editorial review. Of particular help to us were
the reviews of members of the ADR and Ethnotech technical staffs. The
painstaking editorial work of Chris Gibbs, Mary Hutchinson, and Julie
Wilson must be mentioned in a separate category—‘‘above and beyond
the call of duty.” In Julie’s case, an even stronger commendation is in
order, perhaps, for risking her sanity in trying to index all this diverse
material.

Special commendation also must go to Herb Nolan of Winthrop,
who picked up the pieces upon the untimely departure of another mem-
ber of the staff, and to Mike Meehan, whose vision inspired this project
and kept it going in the darkest hours.

Gerald M. Weinberg
Stephen E. Wright
Richard Kauffman
Martin A. Goetz

XX



Contents

Preface Xvii

Should You Buy This Book © How to Use This
Book e On the Use of ADR Software Products e

Acknowledgments
A. THE PROGRAMMING BUSINESS 1
A.1. What Is High Level COBOL Programming? 2

Categorizing ‘“‘High Level”” ® Programming as a High
Level Responsibility e Equality in Programming
Languages

A.2. What Is Programming? Why Is It Difficult? 5
Programming Is Foresight ® Programming Is Writing

the Recipe, Not Baking the Cake ® The ‘If-so-then-so”
Paradigm e The Programmer’s Recipe Must Be



vi

A3.

A4,

Contents

Unambiguous ® The Programmer’s Recipe Must Be
Complete ® The Programmer’s Recipe Must

Terminate ® The Programmer’s Recipe Must Be
Widely Applicable ® The Programmer’s Recipe Must
Be Verifiable ® The Programmer’s Recipe Must Be
Created in a Controlled Way e Large Programs Are
Mastered by Successive Refinement ® The Programmer
Has Many Tools, Some of Them Programs e
Programming Is More than Communicating with
Computers

Can Programming Be Treated in a Businesslike Manner?

The Big Switch to Small Computers ® Some Indirect
Programming Costs ® Programs as Assets ® Good
Management in Programming Pays

Is a Businesslike Manner Enough?

Appearance Isn’t Everything ® Coding Isn’t
Everything e Titles Aren’t Everything ® Realizing
the “High Level” Vision e Functions Are More
Important than Definitions

Questions

For Managers ® For Technical People

Supplementary Readings

MANAGING HIGH LEVEL PROGRAMMING

B.1.

How Do You Get People to Produce Quality Programs?

The Right Thing for the Wrong Reason ® The Wrong
Thing for the Right Reason ® Communicate, Not

12

16

17

19

20



B.2.

B.3.

Contents
Tell e Goals and Trade-offs @ Better Never than
Late e Haste Makes Waste
What Is the Value of Quality?
Little Exrrors Cost Big Money e Little Money Becomes
Big Money e Disasters Become Rules ® Rules Become
Counterproductive
Monitoring Quality During Development
Finding Bugs Before They Eat Too Much Money e

The Development Library ® The Program Activity
Reports ® The Module History Report

Questions

For Managers ® For Technical People

Supplementary Readings

CRITICAL PROGRAM READING

C.1.

C.2.

Case Study: SERVICING

Good Writing for Easier Reading ® Paying Attention
to Details ® Programming Isn’t Baloney ® A Lot Can
Be Learned from a Little ® Writing with the Reader in
Mind e Learning to Make Something out of Nothing e
Looking at Literals

Abbreviation Through Shorthands

The Importance of Meaningful Names ® Separating
Reading and Writing @ Installation-standard
Shorthands ® What We Have Accomplished ® Box:
Defining Shorthands for the Preprocessor

vii

23

26

29

30

31

32

36



viii

C3.

Contents

Case Study: Service Reporting

The Harm in the GO TO e What Clarity Buys e
Symptoms of Poor Programming e Eliminating
the Residue of Poor Programming

Questions

For Managers ® For Technical People

Supplementary Readings

HIGH LEVEL CONTROL

D.1.

D.2.

D.3.

D.A4.

Control Structure Through Macros

The Effect of Small Problems on Big Programs @ The
All-powerful Period e A Preprocessor IF-THEN-ELSE
Structure ® An Extensible IF-THEN-ELSE e Why
Eliminate the GO TO? e Where Has the GO TO Gone?

The Process Concept

Bricks or Stones? ® Building with Processes ®
Getting in “‘Structured’ Trouble ® Making Assertions
As We Build

Eliminating the “GO TOO FAR"

Four Ways to Keep Control e Style in Control e
Standards in Control ® New Language in Control—
SELECT EVERY e SELECT FIRST e The
SELECT Postscript ® Verifying the Control

Controlling the Source Code

Benefits of a Development Library System e The
Changeover to a Development Library ® Updating

41

46

47

48

53

56

61



Contents

the Source Library ® Outputs from the Development
Library ® Box: Implementing Changes to a Source
Module

Questions

For Managers ® For Technical People

Supplementary Readings

STYLE AND WORKMANSHIP

E.1.

E2,

¥E3.

E4.

Style Through Feedback

The Feedback Principle ® ‘“Backward” Thinking e
Difficulty with Negation ® DeMorgan’s Law e
Compound Conditionals ® ‘“Redundant’
Parentheses ® What Is ‘“‘Natural’”?

Style and Choice in Decision Structures

Levels of Programming Risk ©¢ SELECT LEADING
ACTIONS e SELECT FOR e Editing with the

IS FALSE Suffix

Which Switch to Ditch?

The Many Meanings of MOVE e A Standard Flag e
Standards and Style

To Qualify or Not to Qualify?

The Effectiveness of Name Standards e Qualification
versus Renaming e Prefixing by Preprocessor

65

67

69

70

75

78

81



Contents

E.5. Aids to Workmanship

Debugging versus Design ® Methods of Controlling
Typographical Errors e File and Data Definition
Libraries © Box: COBOL COPY and the Preprocessor ®
Automatic Detection of Error-prone Forms ® Box:
Preprocessor Assistance for Stylistic Improvements

Questions

For Managers ® For Technical People

Supplementary Readings

MODULARITY

F.1. The Module Concept—A Case in Point

Some Muddled Logic and Its Consequences @
Indications of Poor Structure ® A New Top Level
Design ® The Preprocessor DO e The Preprocessor
LOOP e A Serious Error Arising from Poor
Structure ®© The HEADER Module e Functional
Division into Modules ® Testing the Functional
Division ® The Too Small Module e Expansion
Without Contamination @ Prevention versus Cure

F.2. Modules and Modification

Testing a Design through Virtual Modifications e
Reasonable and Unreasonable Modifications e
Building Control Counts e Interspersing Batch
Cards e Altering the Header ® Vulnerability to
Punching Errors

F.3. Creating a Modular Test Environment

Testing versus Production e Box: Explanation of
Modular Test Run ® Advantages of the Modular

84

88

89

91

92

99

104



Contents

Test Environment ®© Monitoring Modular Testing e
The Transition to Production e Transition to
Maintenance

Questions

For Managers ® For Technical People

Supplementary Readings

REFINEMENT

N

G.1.

G.2.

G.3.

G4.

Development Through Refinement

A Practice Problem—Counting Duplicates ® The Top
Level Conception—An Output-driven Program e
Splitting the Problem e WRITE-NEXT-OUTPUT e
GET-NuX"™ -OUTPUT e INITIAL-PROCESSING and
FINAL-P..OCESSING e Naming and Placing Flags

A Test Environment for Refinement

The Metamodule Concept ® The Structure of the
Metamodule e Stubs to Simulate Modules e
Proceeding in Verifiable Steps ® Box: The Structure
of Two Stubs ® What is Reliable Development?

Development Through Continued Refinement

What Each Level Must Accomplish ® The Need for an
Image of Lower Levels ¢ NEXT-RECORD-TO-
OUTPUT-AREA e Should We Improve It?

Backing Up and Going On

UPDATE-OUTPUT-AREA e Good Reasons for
Backing Up ® FLAG Conventions with Common

xi

107

109

111

112

118

123

126



xii

Contents

Subroutines ® Completing the Refinement e
Characteristics of Bottom Levels

Questions

For Managers ® For Technical People

Supplementary Readings

VERIFICATION

H.1.

H.2.

H.3.

Verifiable Assertions

A Small Number of Testable Assertions ® Assertions
Developed Top Down @ An Ounce of Prevention or a
Pound of Excuses ® Assertion of General Properties ®
Exposing Ambiguodus Specifications

Verification and Refinement in Parallel

Verifying the Replacement of Stubs ® Determining
the Input Set Needed for Verification ® Simulating
Files with Tables ® What Happened to Debugging?

Verification With Generated Input Files

Eternal Vigilance e Verification with Feedback e
Verifying Input Modules ® A Data Generator
Program e Box: Building a Test Data Generator
Miniprogram

Questions

For Managers ® For Technical People

131

132

133

134

137

141

146



Contents

Supplementary Readings

SHELTERING

1.1.

Sequence Checking

To Do It or Not to Do It? © Where to Do It e How
to Do It ® A Question that Prevents Patching e
Verifying the Modification ® Can Bugs Be Found?

Internal Coordination of Attributes
Troubles Come Not Singly e Linking Related

Attributes ® Linking Procedural Code to Table Size e
Eliminating Literals

. Protecting the Interface With Closed Subroutines

The CALL—Sc'ution or Problem? e Verbalizing the
Interface ® Advantages of the Preprocessor
Interface

. Counting for Control

Must Input Checking Always Be Sticky? ® Impulses
Can Be Dangerous ® Impulses Can Be Useful e
Inpulses Can Be Right ® Impulses Must Be Verified

. Defending Against Things That “Can’t Happen’’

A Sad, Funny, Special Story ® Positive Programming e
Tools Encourage Sheltering

Questions

For Managers ® For Technical People

xiii

148

149

150

155

159

162

166

168



