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Preface

SHOULD YOU BUY THIS BOOK?

If you are reading this preface, chances are you are trying to decide
whether this book is worth reading, or buying, or using as a textbook.
We shall try to give you the information you need to make that decision.

The title is of some help. COBOL means this book is aimed at the
community of people who solve business problems using COBOL in
some way. “High level” means that it is not another introduction to
COBOL. If you have never written a COBOL program, or managed the
writing of one, this book is not for you—at least, not yet. Take an in-
troductory COBOL course, or read one of the hundreds of introductory
texts; after that, we shall be most pleased to have you back.

The one other thing you need to know about this book is captured
in one phrase used above—*‘solve business problems.” Though we have
perhaps lost sight of it in the muck and mire of day-to-day programming,
what computers are really useful for is solving business problems. The
computer, the COBOL language, and each individual program are merely
means we employ to solve business problems. Unhappily, they often
seem to be a means of creating business problems.

If you are attempting to solve business problems with the aid of
computers and, more especially, COBOL, this book is for you. If you
are, in the process, creating more business problems than it seems to be
worth, this book is especially for you. If you are a student, hoping to
someday solve business problems with the aid of computers and COBOL,
this book is for you, too—though you may not appreciate the full nature
of the problems that it addresses. If you have a good teacher, he or she wi!
be able to fill you in about why such a book is necessary—that is, why
there is more to solving business problems than writing COBOL pro-
grams.

That’s really all there is to deciding whether to use this book, other
than taking a look at the way it is written to see whether you like our
approach. Inside, you’ll find that we are not trying to tell you what to
think, but are giving you some ideas about how to think when you are
trying to solve business problems with COBOL. We’re also trying to
show you what to think about. We’ll direct your attention to some
factors you may have been excluding from your thinking about pro-
gramming. As we do this, we’ll draw upon thoughts that others have
had and put into practice with considerable success. No doubt you may
have already tried some of them and can learn from your own experi-
ences. Once you’ve added what we have to say to your own store of
experience, you may find that you want to change the way you go
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about solving business problems. That’s what we hope, and we’d like to
hear from you as it happens.

HOW TO USE THIS BOOK

This book has an unusual organization—you must start reading at the
front and continue page by page to the back!

While this structure initially may not seem particularly curious,
we have to warn those nontechnical people who might be tempted to
crack the book somewhere in the middle and quickly decide it is not
for them. This book is for all people involved in the development of
COBOL programs—from top management on down. Although not all
people will read all the way through from front to back, everyone does
need to start in the front. As the going gets more technical, some may
drop out along the way—but we hope not before they learn that there
is an inescapable technical dimension to managing successful COBOL
programming.

Conversely, there is an inescapable business dimension to writing
successful COBOL programs—so the technical people should not skip
the first part of the book. In a way, the entire book is a,bout the inter-
weaving of technical and business questions. Managers must be willing
to bear with us through some demonstrations of why their best-laid
plans can be sabotaged by poor attention to technical details. On the
other hand, programmer/analyst types are going to have to learn more
about how their work fits into a larger world than MOVE CORRE-
SPONDING or GO TO DEPENDING ON.

Everyone, therefore, will benefit from reading this book as we have
said—from the front to the back. They might benefit even more if they
get together and discuss what they have read.

On the other hand, we have no illusions about the importance of
our book in the eyes of the typical reader. Ou . business has always
been characterized by ‘“busyness,” so we have added a few features for
the harried programmer or executive. First of all, we have provided a
generous diet of subtitles to assist the reader in skipping over parts
of no immediate interest. The subtitles will also help the reader who
is interested, but cannot spend enough time at one stretch to read an
entire chapter, or even a section. Usually, the material under one sub-
title is readable on its own, without strong reference to the preceding
material.

Second, we have enclosed some of the most technical material in
boxes to indicate that it can be skipped without any real loss of con-
tinuity—unless you are interested in the technical points in themselves.
Skipping the boxes should shorten the reading time and raise the in-
terest level for the nontechnical reader. Even the technical reader may
choose to skip the boxes on the first pass.

Third, the organization of the book should make it easy to refer
back to some important point. The Contents is a good guide, but don’t
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forget the Index in the back. Also in the back are some appendixes
containing particularly technical material for those who want to go one
level deeper into technical matters.

ON THE USE OF ADR SOFTWARE PRODUCTS

In order to demonstrate the effective interweaving of technical and
business dimensions in the development of COBOL programs, we need
to discuss the role of software tools such as a source library system and
a COBOL preprocessor. We particularly need a macropreprocessor to
attain our higher level without worrying about burdensome details that
might tax the patience of the less technical reader.

Because several of the authors are from Applied Data Research
(ADR), MetaCOBOL® and The LIBRARIAN® are available to us, and
have been reasonably well tried. We do not wish to imply that there are
no other preprocessors or source library systems, nor that others are
without merit. The choice of tools—made or purchased—is beyond the
scope of this book, and should be left to the individual installation.
What we have done is demonstrate the use of tools in ways that can
reasonably be adapted to similar tools—or even (though with somewhat
more clerical effort) to systems without such tools at all.

A COBOL macropreprocessor enables us to experiment with and
evolve new logical structures and introduce them to the COBOL com-
munity without waiting five years before the next language revision.
Because we use software tools, we separate out the purely clerical fac-
tors in changing to new structures, so we present our readers with a
vision of what they may attain by pursuing these directions. We believe
that these directions should be pursued, and that tools will help. That
is the main emphasis of this book.

Because of our ADR orientation, there may seem to be another
emphasis—to buy or license ADR products. Although we would be happy
if that should happen, we must not let that pleasant possibility intrude
on our main message. Consequently, we have attempted to minimize
direct reference to ADR products by name, except in the appendixes
that describe those products explicitly. In the text, we shall refer to
“our preprocessor,” “our development library system,’’ and so forth.
We have taken liberties with the precise syntax and other features of
these ADR products whenever we felt that:

1. precision would interfere with reader comprehension; or
2. the particular features were not, perhaps, as we would like them
to be.

In short, we hope that the use of ADR software products contributes
to, rather than detracts from, the attainment of our major goal—which
is to help our readers improve all aspects of their COBOL programming.
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