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PREFACE

Our decision to write this book stems from the fact that the kind of analysis
involved in what we group under the heading of “Geological Factor Analysis”
has become one of the most frequently used sets of multivariate statistical
techniques in geology and the general concepts of which many geologists have
at least a vague understanding. In putting all of these techniques into the same
bag, we recognize the fact that the term ““factor analysis’’ has come to be applied
by geologists to a particular kind of analytical procedures of which only a few
belong to the classical factor model such as it is conceived by psychometricians.

It is the aim of our text to introduce students of geology to the powerful
technique of factor analysis and to provide them with the background necessary
in order to be able to undertake analyses on their own. For this reason, we have
tended perhaps to be over-explicit when dealing with the introductory require-
ments for understanding the calculations and to have paid less attention to
theoretical details. Clearly, we have definitely not written a text for statisticians.

The analysis of homogeneous multivariate populations in the earth sciences
has grown into a primary research branch of almost unlimited potential; this
development, largely made possible by the rise of the electronic computer, has
greatly altered methodology in the petroleum industry, mining geology, geo-
chemistry, stratigraphy, palaeontology, chemical geology, environmental
geology, sedimentology and petrology.

Chapter 1 introduces the concept of multivariate data analysis by factoring
methods. In Chapter 2, we present the basic concepts of multivariate algebra
(linear algebra, matrix algebra) and theé most commonly occurring matrix
arithmetic operations of factor analysis. We also consider the rotation of
coordinate systems and the role of eigenvalues and eigenvectors.

In Chapters 3 and 4, we take up theoretical concepts of factor analysis and
the statistical interpretation of models, in which the presentation is made in
terms of fixed mode and random mode: we give an account of the methods of
principal components, and ‘“‘true” factor analysis. In Chapter 5, @-mode factor
analysis, principal coordinates and correspondence analysis are presented.
Chapter 6 is concerned with every-day practical problems you are liable to run
into when you plan and carry out factor analyses. Here, such diverse topics as
selection of the most suitable method, choosing the number of meaningful
factors, and data transformations, are discussed.

Chapter 7 takes you through examples of each of the major techniques. We
end up this section with a set of reviews of randomly chosen applications of
factor analysis from the literature.

It is hoped that this book, the result of the collaboration between a profes-
sional statistician and two geologists with experience in various fields of
application of the methods presented here, will prove useful to students and
research workers alike.



VI

It is expected that most users of our text will have little knowledge of the
general field of statistics and we.have, therefore, chosen to develop our sub-
ject at an elementary level. We wish, nevertheless, to recommend strongly to
those who lack a background in statistics to do some introductory reading in
the subject.

The opportunity of testing our approach to Factor Analysis was given to us
in the Spring of 1974, when we gave a post-graduate course on the subject at
Uppsala University. This cooperation at the teaching level provided a valuable
sequel to the year of preparation behind the book and helped to iron out diffi-
culties concerning presentation of the text. Thanks to a grant from the Natural
Research Council of Canada, Klovan was able to spend the greater part of the
Academic year of 1973—1974 at Uppsala.

Several colleagues have aided in furthering the development of the book. In
particular, we wish to mention Mr. Hans-Ake Ramdén, Uppsala Datacentral,
Mr. John Gower, Rothamsted Experimental Station, U.K., Dr. M. David, Ecole
Polytechnique, Montréal, Canada, Mr. M. Hill, Natural Environment Research
Council, Bangor, U.K., Dr. A.T. Miesch, U.S. Geological Survey, Denver, U.S.A.,
and Mr. Colin Banfield, Rothamsted, U.K.

K.G. JORESKOG, J.E. KLOVAN, R.A. REYMENT



GLOSSARY OF THE MOST COMMONLY USED SYMBOLS

N = the number of objects (specimens, observations) in a sample; it denotes the
size of the sample

p = the number of variables (characters, attributes)

k = the number of factors

X = the data matrix (the order of which is N X p)

Z = the standardized data matrix

W = the row-normalized data matrix of Imbrie @-mode factor analysis

R = the sample correlation matrix

S = the sample covariance matrix

Z = the population covariance matrix

H = the association matrix of @-mode methods

A = the population and sample diagonal matrix of eigenvalues; the elements of
this matrix are A,

U = the sample matrix of eigenvectors

F = the matrix of factor scores

A = the matrix of factor loadings

E = the matrix of residuals or error terms

i and j are used to denote the indices for rows and columns of a p X p matrix
(for example, the correlation matrix)

m and n are used to denote row and column indices for N X N matrices; the
data matrix X yxp, has then a general element x,,;, a correlation matrix
R, a general element r;; and an association matrix H, a general element h,, ,
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Chapter 1

INTRODUCTION

1.1 STRUCTURE IN MULTIVARIATE DATA

Commonly, almost all geologists make a great number of measurements in
their daily activities, for example, on the orientation of strata, geochemical
determinations, mineral compositions, rock analyses, measurements on fossil
specimens, properties of sediments, and many other kinds. You need only
reflect on the routine work of a geological survey department in order that the
truth of this statement may become apparent.

The data of geology are very often multivariate. For example, in a rock
analysis, determinations of several chemical elements are made on each rock
specimen of a collection. You will all be familiar with the tables of chemical
analyses that issue from studies in igneous petrology. Petrologists have devised
many kinds of diagrams in their endeavour to identify significant groupings in
these data lists. The familiar triangular diagrams of petrology permit the rela-
tionships between three variables at a time to be displayed. Attempts at illus-
trating more highly multivariate relationships have led to the use of ratios of
elements and plots on polygonal diagrams.

Obviously, one can only go so far with the graphical analysis of a data table.
The logical next step is to use some type of quantitative method for summariz-
ing and analyzing the information hidden in a highly multivariate table. It is
natural to enquire how the variables measured for a homogeneous sample are
connected to each other and whether they occur in different combinations,
deriving from various relationships in the population. One may, on the other
hand, be interested in seeing how the specimens or objects of the sample itself
are inter-related, with the thought in mind of looking for natural groupings. In
both cases, we should be looking for structure in the data.

Geologists came into touch with the concept of factor analysis and the study
of multivariate data structure through the contacts between palaeontologists
and biologists. The biologists, in their turn, learnt the techniques from psycho-
metricians. Thus, the French zoologist Teissier studied multivariate relation-
ships in the carapace of a species of crabs (Teissier, 1938), using a centroid
first-factor solution of a correlation matrix. He interpreted this “general factor”
as one indicating differential growth.

Let us now look briefly at a few typical problems that may be given meaning-
ful solutions by an appropriately chosen variety of factor analysis.

A geochemist has analyzed several trace elements in samples of sediment
from a certain area and he wishes to study the relationships between these ele-
ments in the hope of being able to draw conclusions on the origin of the sedi-
ment.

A mining geologist is interested in prospecting an area for ores and wants to
use accumulated information on the chemistry and structural geology of
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known deposits in the region to help predict the possibilities of finding new ore
bodies. '

A palaeontologist wishes to analyze growth and shape variation in the shell
of a species of brachiopods on which he has measured a large number of char-
acters.

A petroleum company wants to reduce the voluminous accumulations of
data deriving from palaeoecological and sedimentological studies of subsurface
samples to a form that can be used for exploring for oil-bearing environments.

In an oceanological study, it is desired to produce graphs which will show
the relationships between bottom samples and measurements made upon them
on a single diagram as a means of relating organisms to their preferences for a
particular kind of sediment.

1.2 AN EXAMPLE OF FACTOR ANALYSIS

At this point, we think it would be helpful to you if we gave you an inkling
of what is obtained in a factor analysis. We have chosen an albeit artificial min-
ing example by Klovan (1968) as it not only introduces the geological element
at an early stage but also because it does provide a good practically oriented
introduction to the subject.

Imagine the following situation. We wish to carry out exploration for lead
and zinc in an area containing a high-grade lead-zinc ore. The area has been well
explored geologically and the bedrock is made up of an altered carbonate-shale
sequence. The map area and the sampling grid are displayed in Fig. 1.1.

The three controls, palaeotemperature (7)), strength of deformation of the
bedrock (D), and the permeability of the rock (P) are considered to determine

T T T T T
il +6 +17 *1s +19 +20
= +15 +14 +13 +12 +11

- tg *7 o0
3 +s *s + 7
L 1 1 1 !

Fig. 1.1. The sampling grid for the prospecting example.



DISTRIBUTION OF PALEOTEMPERATURES
————— DISTRIBUTION OF PERMEABILITY
————— DISTRIBUTION OF DEFORMATION

Fig. 1.2, Distribution of controls imposed at the locations of the samples.

the occurrence of lead and zinc, for the purposes of our example. It is assumed
that these controls are determinable from observations on ten chemical, mineral-
ogical and rock-deformational variables. The distribution of these causes will in
reality never be known but, for this example, we shall imagine that they are
distributed as shown in Fig. 1.2. You will note that the lode lies at the intersec-
tion of these causes at certain specified levels. These are, for palaeotemperature,
80—90, for deformation, 35—45, and for permeability of the country rock,
45—50. Accepting that a geological survey of the area would have given as clear
an indication as our manufactured example, it would not be unreasonable to
expect that target areas for intensive prospecting would occur in localities
where the intersection situation is repeated.

The three controls can, of course, not be estimated directly. They can, how-
ever, be measured indirectly from geological properties that are a reflection of
them. The arrays shown in Table 1.I list the artificial data, as well as the infor-
mation used in constructing this set of observations. The left array of numbers
gives the “amount” of each of the three controls at each of the localities; the
upper array states precisely the degree to which each of the geological variables
is related to the causes. Multiplication and summation of every row of the left
array by every column of the top array yields the large array (corresponding to
raw data) at the bottom. Naturally, in a real study, you would not know the
left-hand and top arrays of Table 1.I. All you would have at your disposal
would be the large array, or data matrix, the result of a detailed geological
survey and a laboratory study of the samples collected.

The question to be answered now is, how can we determine the existence of
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TABLE 1.1L
THE RAW DATA MATRIX FOR THE LEAD—ZINC PROSPECTING PROBLEM

Geological properties

Mg in calcite

Fe in sphalerite

Na in muscovite

Crystal size of carbonates
Spacing of cleavage:
Elongation of ooliths
Tightness of folds

Vein material per metre?
Fractures/metre2

Sulphide

Causes T 0.95 0.75 0.75 0.33 —0.20 0.05 0.20 0.10 0.00 0.05
D 0.00 0.10 0.20 0.33 0.60 0.95 0.70 0.85 0.10 0.25
P 0.05 0.15 0.05 0.34 0.60 0.00 0.10 0.05 0.50 0.70
Local- T D P Data matrix
ity
31 121 21 46 | 1175 999 975 625 158 262 437 324 431 433
2 96 35 42 936 820 813 575 267 379 478 413 411 428
3 78 54 49 765 711 716 599 457 548 579 558 491 513
4 63 51 49 624 598 600 542 471 515 531 520 490 500
5 42 44 44 | 417 422 422 432 444 441 437 439 437 437
6 39 26 54 401 403 375 401 405 270 317 290 515 465
7 52 36 52 520 504 488 469 427 370 410 386 507 482
8 67 46 54 661 626 618 553 462 466 506 480 529 523
9 90 37 51 877 787 773 594 354 401 493 434 500 498
10 108 27 61 1060 932 898 656 315 312 468 370 580 552
11 112 33 59 1010 960 935 681 334 375 518 427 567 555
12 91 38 59 896 811 790 629 403 411 511 448 570 555 .
13 76 39 54 748 688 672 560 401 399 472 426 525 512
14 63 30 51 617 573 553 477 360 315 385 342 487 462
15 43 19 55 436 424 389 393 361 207 277 236 514 455
16 68 16 42 664 587 560 419 212 182 287 221 397 369
17 77 27 41 750 665 651 484 259 299 387 331 399 396
18 93 37 43 | 903 797 791 573 291 396 486 427 421 = 437
19 102 47 48 998 888 887 657 366 499 583 527 480 506
20 120 36 46 ‘ 1162 999 994 671 252 404 539 450 449 471

structure in such a large ‘array of numbers? The technique of factor analysis
turns out to be a useful way of providing plausible answers. '

Simply put, factor analysis creates a minimum number of new variables
which are linear combinations of the original ones such that the new variables
contain the same amount of information.

The starting, point is provided by the correlations between the variables
measured, ten in all. The matrix of correlation coefficients is listed in Table
1.11. It was subjected to principal components factor analysis for which three
significant factors were obtained. Thus, we began with ten characters but can
now ‘“‘explain” the total variability of the sample in terms of three new variables
or factors.

The principal-factor matrix is listed in Table 1.I1I; it shows the “composition”
of the factors in relation to the original variables. As these factors are usually
not readily interpretable, it is accustomed practice to rotate the reference axes



TABLE 1.11

INTER-CORRELATIONS AMONG THE TEN GEOLOGICAL PROPERTIES

Mg
1 1.000 Fe
2 0.998 1.000 Na
3 0.994 0.998 1.000 s
4 0.908 0.933 0.942 1.000 crystal
5 —0.576 —0.523 —0.497 —0.180 1.000 cleavage
6 0.130 0.183 0.235 0.477 0.616 1.000
7 0.581 0.625 0.664 0.834 0.258 0.880
8 0.282 0.334 0.383 0.610 0.519 0.987
9 0.012 0.057 0.035 0.286 0.539 0.181
10 0.258 0.313 0.312 0.590 0.550 0.524
1
2
3
4
5
6 ooliths
7 1.000 folds
8 0.944 1.000 veins
9 0.216 0.208 1.000 fractures
10 0.604 0.573 0.909 1.000

by some appropriate method in order to bring out the important contributing
loadings and to diminish the loadings on non-significantly contributing variables.
The visual result of the rotation will then be that some of the loadings will have
been augmented while others will have become greatly lower. In our example,
we used the varimax rotation technique. The varimax factor matrix displayed
in Table 1.III demonstrates what we have just described and you will see this if
you compare entries in the two upper listings of the table, entry by entry. The
rotated factor matrix contains ten rows and three columns, each latter repre-
senting a factor. Reading down a column, the individual numbers tell us the
contribution of a particular variable to the composition of the factor; in fact,
each column can be thought of as a factor equation in which each loading is the
coefficient of the corresponding original variable.

A third chart of numbers emerges from the factor analysis, the varimax
factor score matrix, shown in Table 1.IIL. This gives the amounts of the new
variables at each of the sample localities. With this matrix, we are able to map
the distributions of these new factor variables on the sample grid.

It requires sound geological reasoning in order to interpret the results of a
factor analysis. From Table 1.III, you will see that the first factor is mainly
concerned with the variables: Mg in calcite, Fe in sphalerite, and Na in musco-
vite, a combination indicating temperature dependence. The second factor is
heavily loaded with the variables: spacing of cleavage, elongation of ooliths,
and tightness of folds, a combination speaking for rock deformation. The third
factor is dominated by the variables: vein material per m?, and fractures per
m2, interpretable as being a measure of permeability of the country rock.

The distribution of the three sets of factor scores is shown in Fig. 1.3. The
patterns of Fig. 1.2 are almost exactly duplicated. By comparing the nature of
the intersections around the known ore body, and searching the diagram for a
similar pattern, you will see that at least one other area on the map has the
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TABLE 1.1III

RESULTS OF THE FACTOR ANALYSIS

Variable Communality Factors

1 2 3

Principle factors of correlation matrix

1 1.0000 0.8029 —0.5894 0.0886
2 1.0000 0.8385 —0.5367 0.0940
3 1.0000 0.8579 —0.5122 0.0407
4 1.0000 0.9760 —0.1961 0.0943
5 1.0000 0.0176 0.9998 —0.0098
6 1.0000 0.6538 0.5999 —0.4611
7 1.0000 0.9297 0.2393 —0.2799
8 1.0000 0.7647 0.5018 —0.4042
9 1.0000 0.3268 0.5407 0.7751
10 1.0000 0.6641 0.5437 0.5132
Variance 54.614 31.928 13.459
Cumulative variance 54.614 86.542 100.000

Varimax factor matrix

1 1.0000 0.9971 0.0765 —0.0060
2 1.0000 0.9916 0.1241 0.0362
3 1.0000 . 0.9835 0.1804 0.0117
4 1.0000 0.8813 0.3985 0.2540
5 1.0000 —0.6197 0.5880 0.5198
6 1.0000 0.0558 0.9897 0.1317
7 1.0000 0.5191 0.8380 0.1680
8 1.0000 0.2102 0.9648 0.1580
9 1.0000 0.0146 0.0488 0.9987
10 1.0000 0.2338 0.3979 0.8872
Variance . 44.771 33.318 21.912
Cumulated variance 44.771 78.089 100.000

Varimax factor score matrix

Locality Factors
1 2 ]
1 1.7291 —1.1345 —0.9480
2 0.6130 0.2141 —1.3682
3 —0.2291 1.8610 0.0226
4 —0.7962 1.5403 0.0196
5 —1.6301 0.9332 —0.8890
6 —1.6345 —1.0766 0.6182
7 —1.11567 —0.0212 0.4175
8 —0.5908 0.9143 0.7663
9 0.3711 0.2439 0.2588
10 1.2434 —0.9398 1.7595
11 1.3197 —0.2480 1.4876
12 0.4639 0.1764 1.5324
13 —0.1684 0.1884 0.7211
14 —0.6634 —0.5747 0.0782
15 —1.3364 -—1.7591 0.6394
6 —0.3829 —1.7847 —1.5171
17 —0.1144 —0.5687 —1.5440
18 0.4618 0.3838 —1.1944
19 0.7982 1.3086 —0.1605
20 1.5620 0.3336 —0.6997

same, special conditions. The marked square is thus the first-order target for
further exploration. This is an artificial example, contrived to give a good
result. Under actual exploration conditions, you would not expect things to
fall out so nicely and your geological knowledge would be put to a greater test.



