LNCS 3208

Hans Jiirgen Ohlbach
Sebastian Schaffert (Eds.)

Prmaples and Practlce
of Semantic Web
Reasoning

Second International Workshop, PPSWR 2004
St. Malo, France, September 2004
Proceedings

bl Springer

Hans Jiirgen Ohlbach
Sebastian Schaffert (Eds.)

Principles and Practice
of Semantic Web
Reasoning

Second International Workshop PPSWR 2004
St. Malo, France,
Proceedings

@ Springer

Volume Editors

Hans Jiirgen Ohlbach

Sebastian Schaffert
Ludwig-Maximilians-Universitit

Institut fiir Informatik

Oettingenstr. 67, 80538 Miinchen, Germany
E-mail: {ohlbach, schaffer}@pms.ifi.Imu.de

Library of Congress Control Number: 2004110896

CR Subject Classification (1998): H.4, H.3,1.2, F.4.1,D.2

ISSN 0302-9743
ISBN 3-540-22961-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11317241 06/3142 543210

Preface

The best informal definition of the Semantic Web is maybe found in the May
2001 Scientific American article “The Semantic Web” (Berners-Lee et al.), which
says “The Semantic Web is an extension of the current Web in which information
is given well-defined meaning, better enabling computers and people to work in
cooperation.” People who work on the Semantic Web quite often base their work
on the famous “semantic web tower”, a product of Tim Berners-Lee’s inspiring
drawing on whiteboards. The lowest level is the level of character representation
(Unicode) and the identification of resources on the Web (URIs). The highest
level concerns the problem of trusting information on the Web. Somewhere in
the middle of the tower is the logic level. It addresses the problem of represent-
ing information on the Web in a way so that inference rules can derive implicit
information from explicitly stated information. The workshop “Principles and
Practices of Semantic Web Reasoning” (PPSWR 2004) addressed problems on
this level. It took place in September 2004 as a satellite event of the 20th Inter-
national Conference on Logic Programming (ICLP) in St. Malo, France. After
PPSWR 2003 in Mumbai, India, it was the second workshop in this series.
This book contains the articles presented at the workshop. The 11 papers
were selected from 19 submissions by the program committee which consisted of

— Francois Bry, University of Munich, Germany

— Frangois Fages, INRIA Rocquencourt, France

— Enrico Franconi, Free University of Bozen-Bolzano, Italy

— Georg Gottlob, University of Vienna, Austria

— Benjamin Grosof, MIT Sloan School of Management, USA

— Carsten Lutz, Dresden University of Technology, Germany

— Nicola Henze, University of Hannover, Germany

— Massimo Marchiori, W3C and University of Venice, Italy

— Hans Jiirgen Ohlbach, University of Munich, Germany

— Sebastian Schaffert, University of Munich, Germany

Michael Schréder, Dresden University of Technology, Germany
— Gerd Wagner, Eindhoven University of Technology, Netherlands
— Howard Williams, Heriot-Watt University, Edinburgh, UK

— Guizhen Yang, University at Buffalo, New York, USA

The main topics that were discussed in the workshop are:

— structures in XML documents:
in the paper: ‘On Subtyping of Tree-Structured Data — A Polynomial Ap-
proach’ by Francois Bry, Wlodzimierz Drabent, and Jan Maluszytiski;

— querying and updating XML documents:
in the papers: ‘Towards Generic Query, Update, and Event Languages for the
Semantic Web’ by Wolfgang May, José Julio Alferes, Francois Bry, and ‘Data
Retrieval and Evolution on the (Semantic) Web: A Deductive Approach’ by
Francois Bry, Tim Furche, Paula-Lavinia P&tranjan, and Sebastian Schaffert;

VI Preface

— invoking ontologies into the querying process:
in the papers: ‘Rules and Queries with Ontologies: A Unified Logical Frame-
work’ by Enrico Franconi and Sergio Tessaris, ‘Semantic Web Reasoning
for Ontology-Based Integration of Resources’ by Liviu Badea, Doina Tilivea,
and Anca Hotaran, and ‘Static Typechecking of Datalog with Ontologies’ by
Jakob Henriksson and Jan Maluszynski;

— manipulating and invoking temporal notions:
in the papers: ‘Reasoning About Temporal Context Using Ontology and Ab-
ductive Constraint Logic Programming’ by Hongwei Zhu, Stuart E. Madnick,
and Michael D. Siegel, ‘Towards a Multi-calendar Temporal Type System for
(Semantic) Web Query Languages’ by Francois Bry and Stephanie Spranger,
and ‘Calendrical Calculations with Time Partitionings and Fuzzy Time In-
tervals’ by Hans Jiirgen Ohlbach;

— non-monotonic reasoning:
in the paper: ‘DR-DEVICE: A Defeasible Logic System for the Semantic
Web’ by Nick Bassiliades, Grigoris Antoniou, and Ioannis Vlahavas;

— Web services:
in the paper: ‘A PDDL Based Tool for Automatic Web Service Composition’
by Joachim Peer.

The PPSWR workshop was supported by the EU Network of Excellence
CoLogNet (http://www.colognet.net) and the new EU Network of Excellence
REWERSE (http://www.rewerse.net). The four-year program REWERSE (REa-
soning on the WEb with Rules and SEmantics) includes 27 European research
and development organizations, and is supposed to bolster Europe’s expertise
in Web reasoning systems and applications, particularly Semantic Web sys-
tems. It consists of the main working groups: ‘Rule Markup Languages’, ‘Policy
Language, Enforcement, Composition’, ‘Composition and Typing’, ‘Reasoning-
Aware Querying’, ‘Evolution’, ‘Time and Location’, ‘Adding Semantics to the
Bioinformatics Web’, and ‘Personalized Information Systems’. The papers in this
volume reflect most of the topics in REWERSE.

PPSWR 2005 is scheduled for September 12-16, 2005. It will take place as a
‘Dagstuhl Seminar’ in the Dagstuhl castle in Germany
(http://www.dagstuhl.de/05371/).

September 2004 Hans Jurgen Ohlbach and Sebastian Schaffert

Table of Contents

On Subtyping of Tree-Structured Data: A Polynomial Approach
Frangois Bry, Wiodzimierz Drabent, Jan Matuszyriski

Towards Generic Query, Update, and Event Languages for the
Semantic Web
Wolfgang May, José Julio Alferes, Frangois Bry

Data Retrieval and Evolution on the (Semantic) Web: A Deductive
Approach

Frangois Bry, Tim Furche, Paula-Lavinia Patranjan,

Sebastian: Schaffert.. .« i scos swims smsss o s smos sy gy SHIRE $F s 6E o

Rules and Queries with Ontologies: A Unified Logical Framework
Enrico Franconi, Sergio TesSariSuuuu e enenenenennn .

Semantic Web Reasoning for Ontology-Based Integration of Resources
Liviu Badea, Doina Tilivea, Anca Hotaran

Static Type-Checking of Datalog with Ontologies
Jakob Henriksson, Jan Maktuszyniskicooiuenenn....

Reasoning About Temporal Context Using Ontology and Abductive
Constraint Logic Programming
Hongwei Zhu, Stuart E. Madnick, Michael D. Siegel

Towards a Multi-calendar Temporal Type System for (Semantic) Web
Query Languages
Frangois Bry, Stephanie Sprangercooiuiiieieeno ...

Calendrical Calculations with Time Partitionings and Fuzzy Time

Intervals
Hans Jirgen Ohlbach o ...

DR-DEVICE: A Defeasible Logic System for the Semantic Web
Nick Bassiliades, Grigoris Antoniou, Ioannis Viahavas

A PDDL Based Tool for Automatic Web Service Composition
JOaCHINE PO s vimisvis B35 FHEE o ioen muivhinsiors ontisfilis SEGHHE B Sy mmrre v G

Author Index

On Subtyping of Tree-Structured Data:
A Polynomial Approach

Francois Bry!, Wiodzimierz Drabent?3, and Jan Matuszyniski®

! Institut fiir Informatik, Ludwig-Maximilians-Universitit Miinchen, Germany
2 Institute of Computer Science, Polish Academy of Sciences, Warszawa, Poland
3 Department of Computer and Information Science, Linkdping University, Sweden
francois.bryQifi.lmu.de drabent@ipipan.waw.pl jmz@ida.liu.se

Abstract. This paper discusses subtyping of tree-structured data en-
countered on the Web, e.g. XML and HTML data. Our long range ob-
jective is to define a type system for Web and/or Semantic Web query
languages amenable to static type checking. We propose a type formalism
motivated by XML Schema and accommodating two concepts of subtyp-
ing: inclusion subtyping (corresponding to XML Schema notion of type
restriction) and extension subtyping (motivated by XML Schema’s type
extension). We present algorithms for checking both kinds of subtyping.
The algorithms are polynomial if certain conditions are imposed on the
type definitions; the conditions seem natural and not too restrictive.

1 Introduction

This paper discusses subtyping of tree-structured data. With the Web, the Web
page markup language HTML, and the emergence of XML as data specification
formalism of choice for data on the Web, tree-structured data are receiving an
increasing attention. Indeed, HTML and XML documents are tree-structured —
cycles induced by ID and IDREF attributes and/or links being neglected as it
is common with Web query languages.

The long range objective of the research reported about in this paper is to
define a type system for Web and /or Semantic Web query languages amenable to
static type checking, the query language Xcerpt [5, 2] being a premier candidate
for such an extension. Such a type system should support subtyping so that the
well-typed procedures/methods of the language could also be safely applied to
subtypes. The question is thus about the suitable concept of type and subtype.
We provide a formalism for specifying types motivated by XML Schema, [13] and
we show two relevant concepts of subtyping: inclusion subtyping, motivated by
XML Schema notion of type restriction, and exrtension subtyping, motivated by
XML Schema notion of type extension. We show conditions for type definitions
under which subtyping can be checked in polynomial time.

As XML data are essentially tree-structured, a natural approach is to view
types as sets of trees and subtyping as set inclusion. To specify such types a for-
malism of regular expression types is proposed in [8] and inclusion subtyping is
discussed. Checking of the subtyping relations can then be reduced to checking

H.J. Ohlbach and S. Schaffert (Eds.): PPSWR 2004, LNCS 3208, pp. 1-18, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 F. Bry et al.

inclusion of sets specified by regular tree grammars [6]. Tree grammars are a
formalism of choice for specifying types for XML documents because both DTD
and XML schemas are derived from them. The inclusion problem for languages
defined by tree grammars is decidable but EXPTIME-complete. It is argued in
(8] that for the regular expression types needed in practice checking of inclusion
is usually quite efficient. We propose a formalism which is a restricted variant
of regular expression types. We argue that the restrictions reflect the usual re-
quirements of the XML Schema, thus our formalism is sufficiently expressive for
practical applications. On the other hand, it makes it possible to identify source
of potential inefficiency. We formulate syntactic conditions on type definitions
under which subtyping can be checked in polynomial time.

It seems that subtyping by inclusion is intuitively very close to the XML
Schema concept of type restriction, and as argued in [3] replacement of the latter
by the former would greatly simplify XML Schema.

In object-oriented processing, the methods of a class must be as well ap-
plicable to the subclasses of the class. Subtyping by inclusion is not sufficient
to capture the notion of subclass. For example, given a type person of XML
documents we may define a type student where the documents have the same
elements as person augmented with the obligatory new element university,
showing the affiliation of the student. This kind of definitions is supported by
XML Schema mechanism of type extension. Notice that in our example none of
the classes is the subset of the other. However, we would like to be able to apply
all the methods of the class person to the objects of the class student. This
can be done by ignoring the additional element of the input document. As the
objective is static typing of the methods, we need yet another notion of subtyp-
ing, in addition to subtyping by inclusion. For our type formalism we define a
formal notion of extension subtype that formalizes such situations. In this paper
we outline an algorithm for checking extension subtyping and we give sufficient
condition for type definitions under which the check is polynomial.

Detailed comparison of our formalism with those of XML Schema and of
other schema languages is outside of the scope of this paper and is a subject
of future work. Also we do not deal here with relation of these formalisms with
ontologies; roughly speaking the former deal with the syntax of documents and
the latter with semantics [9].

The paper is organized as follows. Section 2 discusses the kind of tree-
structured data we want to deal with, and introduces a formalism of type defi-
nitions for specifying sets of such data. The next section gives an algorithm for
validation of tree-structured data w.r.t. type definitions. Sections 4, 5 discuss,
respectively, inclusion and extension subtyping. Section 6 presents conclusions.

2 Tree-Structured Data

2.1 Data Terms

This section formalizes our view of tree-structured data. The next one introduces
a formalism for specifying decidable sets of such data.

On Subtyping of Tree-Structured Data 3

We define a formal language of data terms to model tree-structured data such
as XML documents. This definition does not explicitly capture the XML mecha-
nism for defining and using references. We note that two basic concepts of XML
are tags indicating nodes of an ordered tree corresponding to a document and
attributes' used to attach attribute-value mappings to the nodes of a tree. Such
a finite mapping can be represented as an unordered tree (see Example 2 below).
It should also be noticed that all group of XML Schema [13] allows specifying el-
ements that may appear in the document in any order. These observations bring
us to the conclusion that we want to deal with labelled trees where the children
of a node are either linearly ordered or are unordered. We will call them mized
trees to indicate their distinction from both ordered trees, and unordered trees.

We assume two disjoint alphabets: a countably infinite alphabet £ of labels,
and an alphabet B of basic constants. Basic constants represent some basic
values, such as numbers or strings, while labels are tree constructors.

We now define a formal language of data terms for representing mixed trees.
The linear ordering of children will be indicated by the brackets [,], while un-
ordered children are placed in the braces {, }.

Definition 1. A data term is an expression defined inductively as follows:

— Any basic constant is a data term,
— If I is a label and t4,...,t, are n > 0 data terms, then l[t;---t,] and
I{t1---t,} are data terms.

Data terms not containing {, } will be called ordered.

The data terms {[] or [{} are different. One may consider it more natural
not to distinguish between the empty sequence and the empty set of arguments.
This however would result in some extra special cases in our definitions and
algorithms further on.

Notice that the component terms are not separated by commas. This notation
is intended to stress the fact that the label [in a data term [t; - - - ¢,,] is not an
n-argument function symbol. It has rather a single argument which is a sequence
(string) of data terms ¢;,...,t, (where n > 0). Similarly the argument of [in
I{t1---t,} is a set of data terms.

Ezample 2. Consider the following XML document

<person friend="yes" coauthor="yes">
<first-name>Francois</first-name>
<last-name>Bry</last-name>
<notes/>

</person>

It can be represented as a data term

person| attributes{ friend|yes] coauthor|yes] }
first-name[Francois| last-name[Bry| notes[]]

! However, there is no syntactic difference between tag names and attribute names.

4 F. Bry et al.

where yes, Francois, Bry are basic constants and attributes, friend, coauthor,
first-name, last-name, notes are labels.

The root of a data term t, denoted root(t), is defined as follows. If ¢ is a
constant then root(t) = t. Otherwise ¢ is of the form I[t; - - - ¢,] or I{t; --- ¢, } and
root(t) = l.

2.2 Specifying Sets of Data Terms

We now present a metalanguage for specifying decidable sets of data terms, which
will be used as types in processing of tree-structured data. The idea is similar
to that of [8] (see the discussion at the end of this section) and is motivated by
DTD’s and by XML Schema.

We define the sets of data terms by means of grammatical rules. We assume
existence of base types, denoted by type constants from the alphabet C and a
countably infinite alphabet V of type variables, disjoint with C. Type constants
and type variables will be called type names.

The intention is that base types correspond to XML primitive types. We
assume that each type constant C € C is associated with a set [C] C B of basic
constants. We assume that for every pair C;,Cs € C of type constants we are
able to decide whether or not [C;] C [C3] and whether or not [C1] N[C2] = 0.
Additionally we assume that for each C' € C and a finite tuple Cy,...,C, € C
we are able to decide whether [C] C [C1] U --- U [C,].

We first introduce an auxiliary syntactic concept of a reqular type expression.
As usually, we use € to denote the empty sequence.

Definition 3. A regular type expression is a regular expression (see e.g. [7])
over the alphabet V UC.

Thus ¢, ¢ and any type constant or type variable T' are regular type ex-
pressions, and if 7,71, T2, are type expressions then (7173), (71|72) and (7*) are
regular type expressions. As usually, every regular type expression r denotes a
(possibly infinite) regular language L(r) over the alphabet V U C: L(e) = {e},
L(g) = 0, L(T) = {T}, L((ri72)) = L(r1)L(r2), L((ra}72)) = L(r1) U L(rs),
and L((7*)) = L(7)*. We adopt the usual notational conventions [7], where the
parentheses are suppressed by assuming the following priorities of operators: x,
concatenation, |.

It is well known that any language specified by a regular expression can
also be defined by a finite automaton, deterministic (DFA) or non-deterministic
(NFA). There exist algorithms that transform any regular expression of length
n into an equivalent NFAe with O(n) states, and any NFAe into an equivalent
DFA (see e.g. [7]). In the worst case the latter transformation may exponentially
increase the number of states. Briiggemann-Klein and Wood [4] introduced a
class of 1-unambiguous regular expressions, for which this transformation is lin-
ear. For such regular expression, a natural transformation from NFAe to NFA
results in an DFA.

Notice that the XML definition [12] requires (Section 3.2.1) that content
models specified by regular expressions in element type declarations of a DTD

On Subtyping of Tree-Structured Data 5

are deterministic in the sense of Appendix E of [12]. This condition ensures
existence of a DFA acceptor with number of states linear w.r.t. the size of the
regular expression. It seems that this informal condition is equivalent with that
of [4]. We do not put specific restrictions on our regular type expressions, but
we expect that those used in practice would not cause exponential blow-up of
the number of states of the constructed DFA acceptors.

As syntactic sugar for regular expressions we will also use the following no-
tation:

— 7(n : m), where m > n as a shorthand for 77|r"*1|...|r™,

notice that 7* can be seen as 7(0 : 00)
— 771 as a shorthand for 77%,
— 77 as a shorthand 7(0: 1),

where 7 is a regular expression and n is a natural number and m is a natural
number or co.

Definition 4. A multiplicity list is a regular type expression of the form

s1(ny i mq)---sp(ng : mi)

where k£ > 0 and s, ..., s, are distinct type names.

It can be easily seen that for the language defined by a multiplicity list there
exists a DFA acceptor with the number of states linear w.r.t. to the number of
the type names in the list.

We now introduce a grammatical formalism for defining sets of data terms.
Such a grammar will define a finite family of sets, indexed by a finite number of
type variables 71, ..., T,,. Each variable T; will be associated with a set of data
terms, all of which have identical root label /;. This is motivated by XML, where
the documents defined by a DTD have identical main tags. It is not required
that I; # I; for 4 # j. Our grammatical rules can be seen as content definitions
for classes of data terms. So they play a similar role for data terms as DTD’s
(or XML Schemas) play for XML documents.

Definition 5. A type definition D for (distinct) type variables T1,...,T,,
for n > 1 is a set of rules {Ry,..., R,} where each rule R; is of the form

I:— B
and E; is an expression of the form I;[r;] or of the form l;{g;}, i =1,...,n, where
every [; is a label, r; is a regular type expression over {71, ...,7,,}UC and every

g; is a multiplicity list over {T3,...,T,} UC.

Thus, we use two kinds of rules, which describe construction of ordered or
unordered trees (data terms). As formally explained below, rules of the form
T — I[r] describe a family T of trees where the children of the root are ordered
and their allowed sequence is described by a general regular expression r. The
rules of the form T' — I{q} describe a family T' of trees where the children of
the root are unordered. The ordering of the children is thus irrelevant and the
full power of regular expressions is not needed. We use instead the multiplicity

6 F. Bry et al.

list ¢ which specifies allowed number of children of each type. A type definition
not including the rules of the form T' — I{r} (where L(r) contains a non-empty
string) will be called an ordered type definition.

We illustrate the definition by the following example. In our type definitions
the type names start with capital letters, labels with lower case letters, and type
constants with symbol #.

Example 6. We want to represent genealogical information of people by means of
data terms. A person would be represented by the name, sex and a similar infor-
mation about his/her parents. The latter may be unknown, in which case it will
be missing in the data term. This intuition is reflected by the following grammar.

Person — person| Name (M |F) Mother? Father? |

Name — name(#name]

M — m[]

F - f[]

Mother — person[Name F Mother? Father? |

Father — person[Name M Mother? Father?]

In the sequel we give a formal semantics of type definitions, which will cor-

respond to this intuition.

Definition 5 requires that each type name maps to a label, but the map-
ping may not be one-one, as illustrated by the above example, where the types
Person, Father and Mother map to the same label person. This is more gen-
eral than XML, where there is a one-one correspondence between element types
defined by a DTD and tags (see Section 3.1 in [12]).

Such a restriction facilitates validation of documents but excludes subtyping
understood as document set inclusion. It turns out that we can facilitate vali-
dation and still have inclusion subtyping if the one-one correspondence between
types and labels is enforced only locally for type symbols occurring in the reg-
ular expression of each rule of the grammar. This is reflected by the following
definition.

Definition 7. The type definition D of Definition 5 is said to be proper if for
each E; (1=1,...,n)
— for any distinct type variables T}, , T}, occurring in FE;, l;, # l;,, and
— for any distinct type constants C;, Cy occurring in F;, [C1] N [Cs] = 0.
Notice that the type definition of Example 6 is not proper. The regular ex-
pression of the first rule includes different types Mother and Father with the
same label person. Replacing (in three rules) each of them by the type Person
would make the definition proper.
A type definition D associates with each type variable T; a set of data terms,
as explained below.

Definition 8. A data pattern is inductively defined as follows

— a type variable, a type constant, and a basic constant are data patterns,
— if dy,...,d, for n > 0 are data patterns and [is a label then {[d; - - - d,,] and
l{dy ---d,} are data patterns.

On Subtyping of Tree-Structured Data 7

Thus, data terms are data patterns, but not necessarily vice versa, since a
data pattern may include type variables and type constants in place of data
terms. Given a type definition D we use it to define a rewrite relation —p on
data patterns.

Definition 9 (of —p). Let d,d’ be data patterns. d —p d’ iff one of the
following holds:

1. For some type variable T'
— there exists a rule 7' — {[r] in D and a string s € L(r), or
— there exists a rule T — [{r} in D and a string so € L(r) and a permu-
tation s of sg
such that d’ is obtained from d by replacing an occurrence of T in d, respec-
tively, by {[s], or by I{s}.
2. d' is obtained from d by replacing an occurrence of a type constant S by a
basic constant in [S].

Iterating the rewriting steps we may eventually arrive at a data term. This
gives a semantics for type definitions.

Definition 10. Let D be a type definition for T7,...,T,. A type [T;]p asso-
ciated with T; by D is defined as the set of all data terms ¢ that can be obtained
from T;:

[Tilp ={t|Ti - t and ¢ is a data term }

Additionally we define the set of data terms specified by a given data pattern
d, and by a given regular expression 7:

[dlp ={t|d —} t and ¢ is a data term },
[['I‘]]D == {tl-'-tk |t1 € [[Tl]}D»---,tk € IITk]]D for some T7 --- T} GL(T) }

Definition 11 (of labelp(T) and typep(t,r)). Notice that:

— Every type variable T in D has only one rule defining it, the label of this
rule will be denoted labelp(T).

— Assume that D is proper. Thus given a term [[t; ---t,] and arule T — [[r] €
D, or a term I{t;---t,} and arule T — [{r} € D, for each t; the root of #;
determines at most one type name S occurring in r such that

e S is a type variable and labelp(S) = root(t;), or

e S is a type constant and ¢; € [S].
(In the first case t; is not a basic constant, in the second it is.) Such type
name S will be denoted typep(t;,r). If such S does not exist, we assume

that typep(t;,r) = So, where Sy is some fixed type name not occurring
in D.

If it is clear from the context which type definition is considered, we can omit
the subscript in the notation [|p, labelp() and typep(,).

8 F. Bry et al.

Ezample 12. Consider the following type definition D (which is proper):

Person — person[Name (M|F) Person(0 : 2)]
Name — name[#name)

M — m[]

F—fl]

Let john, mary, bob € [#name]. Extending the derivation
Person — person[Name M Person] —* person|name|[#name] m[] Person|
one can check that the following data term is in [Person]

person[name[john] m[] person[name[mary] f|] person[name[bob]m[]]]].

Our type definitions are similar to those of [8]. The main differences are:
1.Our data are mixed trees instead of ordered trees. 2. Our types are sets of
trees; sequences of trees described by regular expressions play only an auxiliary
role. In addition, all elements of any type defined in our formalism have the
same root label. In contrast to that, types of [8] are sets of sequences of trees.
Allowing mixed trees creates better data modelling possibilities and we expect
it to be useful in applications.

Apart of the use of mixed trees, our formalism is a restriction of that of [8]
since a set of trees can be seen as a set of one-element sequences of trees. Our
restriction seems not to be essential since we can also specify sets of sequences
of trees by means of regular type expressions, even though such sets are not
considered types. It reflects the intuition that type definitions are used for de-
scribing tree-structured data with explicitly labelled roots, and that data of the
same type have identical root labels. This conforms to the practice of XML and
makes it possible to design new validation and type inclusion algorithms with a
potential for better complexity than the algorithms of [8].

In the rest of the paper we consider only proper data definitions, unless
stated otherwise. This results in simpler algorithms. The class of ordered (i.e.
without {}) proper type definitions is essentially the same as single-type tree
grammars of [10]. Restriction to proper definitions seems reasonable, as the sets
defined by main XML schema languages (DTD and XML Schema) can be ex-
pressed by such definitions [10].

3 Validating Data Terms

A data definition D describes expected structure of data and we will use it to
validate given data items d, i.e. to check whether or not d € [T7], for a given type
defined by D. This section gives a general algorithm for validating data terms
against proper data definitions and examines its complexity.

Validating Ordered Data Terms. We first consider proper type definitions which
are ordered (i.e. include no rules of the form 7" — {r}). In that case each [T]
is the set of ordered data terms derivable by the rules. We show an algorithm

On Subtyping of Tree-Structured Data 9

that for a given proper ordered type definition D, type name T', and data term
d = c|[dy - --di) (k > 0) decides whether or not d € [T]p.

The algorithm depends on the fact that D is proper. This implies that for
each distinct type names S, S’ occurring in a regular expression r from D, [S]pN
[S']p = 0. Thus when checking whether a sequence d; - - - dy, of data terms is in
[r]p we need, for a given %, to check d; € [S]p for at most one type name S,
namely S = type(d;,r).

The algorithm employs checking whether z € L(r) for a string z and a
regular expression 7. This can be done in time O(|r|- |z|) [1]. Alternatively, one
can construct a DFA for L(r) for each regular expression in D; this is to be done
once. Then the checking requires |z| steps.

The validation algorithm is described as follows.

validate(d,T) :
IF T is a type constant THEN
check whether d is a basic constant in [T"] and return the result
ELSE (T is a type variable)
IF d is a basic constant then return false
ELSE
IF the rule for T in D is T — ¢[r] THEN
IF root(d) # ¢ THEN return false
ELSE
let d =c[d;---di] (k> 0),
let T; = type(d;,r) for i =1,...k,
IFT)---T & L(r)
THEN return false
ELSE
return /\f=l validate(d;, T;)
ELSE (no rule for T') return false.

This algorithm traverses the tree d. It checks if z € L(r), for some strings and
regular expressions. The sum of the lengths of all the strings subjected to these
checks is not greater than the number of nodes in the tree. Some nodes of d may
require validation against base types. The time complexity of the algorithm is
thus linear w.r.t. the size of d provided that the validation against base types is
also linear.

Dealing with Mized Trees. We now generalize the validation algorithm of the
previous section to the case of mixed terms. So a type definition may contain
rules of the form T' — I{r}, where r is a multiplicity list. The validation algorithm
is similar, just the order of d,...,d; within {{d; - -d;} does not matter.

validate(d,T) :
IF T is a type constant THEN
check whether d is a basic constant in [T] and return the result
ELSE (T is a type variable)
IF d is a basic constant THEN return false
ELSE IF there is no rule for T in D THEN return false

10 F. Bry et al.

ELSE IF root(d) # label(T) THEN return false
ELSE IF the rule for T in D is of the form T'— [{r} THEN
IF d is of the form [[d; - - - di] (k > 0) THEN return false
ELSE
let d =d{d;---di} (k> 0),
let T; = type(d;,r) for i =1,...k,
let N be the set of the type names occurring in r
(notice that according to the definition of type(d;,)
each T; € NU {So}, where Sy & N),
for each S € N U{Sp} count the number ng of the occurrences of S
inTy-- Ty,
IF ng, = 0 and for each S(i : j) occurring in the multiplicity list r
1<ns<jJ
THEN return AY_, validate(d;, T)
ELSE return false
ELSE
IF the rule for T in D is of the form T — [[r] THEN
IF d is of the form I{d; ---dx} (k > 0) THEN return false,
ELSE (now as in the previous algorithm)
let d =¢[dy - --di] (K >0),
let T; = type(d;,r) for it =1,...k,
IF T, - Tk & L(r)
THEN return false
ELSE
return /\f=1 validate(d;, T;),
ELSE (no rule for T in D)
return false.

As in the previous case, the algorithm is linear.

4 Checking Type Inclusion

The main subject of this section is an algorithm for checking type inclusion.

Before presenting the algorithm, we introduce some auxiliary notions. A simpler

algorithm for a more restricted class of type definitions was presented in [11].
A natural concept of subtyping is based on set inclusion.

Definition 13. A type S (with a definition D) is an inclusion subtype of
type T' (with a definition D') iff [S]p C [T]o--
We will denote this as S C T, provided D, D’ are clear from the context.

In this section we show an algorithm for checking type inclusion. Assume
that we want to check S C T for some types defined by proper type definitions
D, D' respectively. We assume that for each type constants C,C’ from these
definitions we know whether [C] C [C'] and [C] N [C’] = 0. We also assume
that for each tuple of type constants C,Cy,...,C, (where [C4],...,[C,] are

On Subtyping of Tree-Structured Data 11

pairwise disjoint) we know whether [C] C [C1] U---U [Cy,]. These facts can be
recorded in tables. Notice that in the latter case it is sufficient to consider only
such Cj,...,C, for which [C] N [C;] #0 for i = 1,...,n. (If some formalism is
used to define the sets corresponding to (some) type constants then we require
that algorithms for the checks above are given.)

By a useless symbol in a regular expression 7 over an alphabet X' we mean
a symbol a € ¥ not occurring in any string z € L(r). Notice that if does not
contain the regular expression ¢ then r does not contain useless symbols. A type
name 7T is nullable in a type definition D if [T]p = 0.

To introduce our inclusion checking algorithm we need some auxiliary notions.
For a pair of type variables S, T let us define a set C(S,T) as the smallest (under
C) set of pairs of type variables such that

— if labelp(S) = labelp:(T) then (S,T) € C(S,T),

£ (5.1 ec(s,m),
e D, D’ contain, respectively, rules S’ — I[ri1] and 7" — l[ro], or S" — I{r:}
and 77 — [{ro} (with the same [),
e type variables S”,T” occur respectively in ri,72, and labelp(S”) =
labelp (T")
then (S”,T") € C(S,T). If D, D’ are proper then for every S” in r1, there
exists at most one T” in 7, satisfying this condition, and vice versa.

C(S,T) is the set of pairs of types which should be compared in order to find
out whether S C T.

C(S,T) can be computed in time O(kn?log(kn)), where n is the number of
rules in the definitions and & is the maximal size of a regular expression in the
definitions. There are examples of D; D’ where C(S,T) contains all the pairs of
type variables form D, D’ respectively.

Consider a type variable 7" in a type definition D. The unique rule T —
log prr,pBr,p in D for T (where ar pfr,p is [] or {}) determines the regular
expression 7, p and the parentheses ap p B, p. When the parentheses are [| then
we are interested in the sequences of root labels in all children of the root [of
the data terms in [T]p. This label language is defined as follows. For a given
regular expression 7

Ty---T,e€L(r)and fori=1,...,n
LLp(r) =< l1,..., 1, | l; = labelp(T;) if T; is a type variable
l; € [T;] if T; is a type constant

We often skip the subscript in LLp when it is clear from the context.
For rules with parentheses {} we will deal with permutations of the strings
from label languages. For any language L we define

perm(L) = {z | z is a permutation of some y € L }.

Now we discuss some necessary conditions for type inclusion and show that
they are also sufficient. Assume that D does not contain nullable symbols, the
regular expressions in D do not contain useless symbols and D’ is proper. Let

