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Preface

The Third 1994 C.LM.E. Session “Transcendental Methods in Algebraic Geometry”
took place from July 4 to July 12 in the beautiful location of the Grand Hotel San
Michele, Cetraro (Cosenza).

Already in the prehistory of algebraic geometry we find the theory of elliptic and
Abelian integrals, which is directly linked with Riemann’s topological approach to
creating the concept of a manifold. Later on, from Poincaré’s use of potential theory for
the study of function theory on complex tori to Hodge’s theory of harmonic integrals
and the vanishing theorems of Kodaira and others, we see that the transcendental
approach puts many algebraic geometric questions on a firm basis.

In doing so, it establishes deep and surprising results, which can often be stated simply,
invigorating a century-long tradition of manifold and fruitful relations with other
disciplines. In a surprising way we see close analogies displayed between apparently
distant methodologies, thus concretely augmenting the unified edifice of mathematics.

It was one of the purposes of the 1994 course to look at the recent developments relating
algebraic geometry to complex analysis, complex differential geometry, and differential
topology as further manifestations of the core of algebraic geometry: a core which,
although nourished by a myriad of subtle and intricate problems, has as its lifeblood the
crucial interplay with a host of other subjects, be they physics, topology, algebra,
analysis, differential geometry, or arithmetic.

From this point of view, the courses given by Demailly, Peternell, Tian, and Tyurin
covered a very wide spectrum, each offering not only a broad view of recent
developments and new results published here for the first time, but also opening wide
perspectives still in the earliest stages of exploration. The beautiful texts of the four
courses reproduced here give us ample justification for dispensing with further historical
and mathematical description.

We would just like to recall that, as in the ancient Greek dramas, unity of place
(lecturers and participants brought close together in the “golden cage” of San Michele),
unity of action (there were only courses and problem sessions), and unity of time (one of
the features of C.I.M.E.) contributed to the success of the course. This success was in
large part due not only to the excellent lecturers but also to the brightness and
knowledge of the participants: the variety of their cultural interests was for us very
impressive, as well as their devotion to science amidst such tempting scenery.

The organizers: Fabrizio Catanese and Ciro Ciliberto
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L? Vanishing Theorems for Positive

Line Bundles and Adjunction Theory
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Université de Grenoble I, Institut Fourier
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0. Introduction

Transcendental methods of algebraic geometry have been extensively studied since a
very long time, starting with the work of Abel, Jacobi and Riemann in the nineteenth
century. More recently, in the period 1940-1970, the work of Hodge, Hirzebruch,
Kodaira, Atiyah revealed still deeper relations between complex analysis, topology,
PDE theory and algebraic geometry. In the last ten years, gauge theory has proved
to be a very efficient tool for the study of many important questions: moduli spaces,
stable sheaves, non abelian Hodge theory, low dimensional topology ...

Our main purpose here is to describe a few analytic tools which are useful to
study questions such as linear series and vanishing theorems for algebraic vector
bundles. One of the early success of analytic methods in this context is Kodaira’s
use of the Bochner technique in relation with the theory of harmonic forms, during
the decade 1950-60. The idea is to represent cohomology classes by harmonic forms
and to prove vanishing theorems by means of suitable a priori curvature estimates.
The prototype of such results is the Akizuki-Kodaira-Nakano theorem (1954): if X is
a nonsingular projective algebraic variety and L is a holomorphic line bundle on X
with positive curvature, then H?(X, 2% ® L) = 0 for p+¢ > dim X (throughout the



paper we set 2§, = APT% and Ky = A"T%, n = dim X, viewing these objects either
as holomorphic bundles or as locally free O x-modules). It is only much later that an
algebraic proof of this result has been proposed by Deligne-Illusie, via characteristic
p methods, in 1986.

A refinement of the Bochner technique used by Kodaira led about ten years later
to fundamental L? estimates due to Hormander [Hor65], concerning solutions of the
Cauchy-Riemann operator. Not only vanishing theorems are proved, but more pre-
cise information of a quantitative nature is obtained about solutions of d-equations.
The best way of expressing these L? estimates is to use a geometric setting first
considered by Andreotti-Vesentini [AV65]. More explicitly, suppose that we have
a holomorphic line bundle L is equipped with a hermitian metric of weight e=2%,
where ¢ is a (locally defined) plurisubharmonic function; then explicit bounds on
the L? norm [, |f|?¢ 2% of solutions is obtained. The result is still more useful if the
plurisubharmonic weight ¢ is allowed to have singularities. Following Nadel [Nad89],
one defines the multiplier ideal sheaf I() to be the sheaf of germs of holomorphic
functions f such that |f|?e~2% is locally summable. Then Z(y) is a coherent alge-
braic sheaf over X and HY(X.Kx @ L @ I(p)) = 0 for all ¢ > 1 if the curvature of
L is positive (as a current). This important result can be seen as a generalization of
the Kawamata-Viehweg vanishing theorem ([Kaw82], [Vie82]), which is one of the
cornerstones of higher dimensional algebraic geometry (especially of Mori’s minimal
model program).

In the dictionary between analytic geometry and algebraic geometry, the ideal
Z(p) plays a very important role, since it directly converts an analytic object into an
algebraic one, and, simultaneously, takes care of the singularities in a very efficient
way. Another analytic tool used to deal with singularities is the theory of positive
currents introduced by Lelong [Lel57]. Currents can be seen as generalizations of
algebraic cycles, and many classical results of intersection theory still apply to cur-
rents. The concept of Lelong number of a current is the analytic analogue of the con-
cept of multiplicity of a germ of algebraic variety. Intersections of cycles correspond
to wedge products of currents (whenever these products are defined). A convenient
measure of local positivity of a holomorphic line can be defined in this context: the
Seshadri constant of a line bundle at a point is the largest possible Lelong number
for a singular metric of positive curvature assuming an isolated singularity at the
given point (see [Dem90]). Seshadri constants can also be given equivalent purely
algebraic definitions. We refer to Ein-Lazarsfeld [EL92] and Ein-Kuchle-Lazarsfeld
[EKL94] for very interesting new results concerning Seshadri constants.

One of our main motivations has been the study of the following conjecture
of Fujita: if L is an ample (i.e. positive) line bundle on a projective n-dimensional
algebraic variety X, then Ay + (n + 2)L is very ample. A major result obtained
by Reider [Rei88] is a proof of the Fujita conjecture in the case of surfaces (the
case of curves is easy). Reider’s approach is based on Bogomolov’s inequality for
stable vector bundles and the results obtained are almost optimal. Unfortunately,
it seems difficult to extend Reider’s original method to higher dimensions. In the
analytic approch, which works for arbitrary dimensions, one tries to construct a
suitable (singular) hermitian metric on L such that the the ideal Z(y) has a given
0-dimensional subscheme of X as its zero variety. As we showed in [Dem93b], this
can be done essentially by solving a complex Monge-Ampere equation



(id'd" )" = linear combination of Dirac measures,

via the Aubin-Calabi-Yau theorem ([Aub78], [Yau78]). The solution ¢ then assumes
logarithmic poles and the difficulty is to force the singularity to be an isolated pole;
this is the point where intersection theory of currents is useful. In this way, we can
prove e.g. that 2K x + L is very ample under suitable numerical conditions for L.
Alternative algebraic techniques have been developed recently by Kollar [Kol92],
Ein-Lazarsfeld [EL93], Fujita [Fuj93] and [Siu94a, b]. The basic idea is to apply
the Kawamata-Viehweg vanishing theorem, and to use the Riemann-Roch formula
instead of the Monge-Ampere equation. The proofs proceed with careful inductions
on dimension, together with an analysis of the base locus of the linear systems
involved. Although the results obtained in low dimensions are slightly more precise
than with the analytic method, it is still not clear whether the range of applicability
of the methods are exactly the same. Because it fits well with our approach, we
have included here a simple algebraic method due to Y.T. Siu [Siu94a], showing
that 2K x + mL is very ample for m > 2 + (3":1).

Our final concern in these notes is a proof of the effective Matsusaka big theorem
obtained by [Siu93]. Siu’s result is the existence of an effective value mo depending
only on the intersection numbers L™ and L™~ ! K x, such that mL is very ample for
m > mg. The basic idea is to combine results on the very ampleness of 2Ky + mL
together with the theory of holomorphic Morse inequalities ([Dem85b]). The Morse
inequalities are used to construct sections of m’L — K x for m’ large. Again this step
can be made algebraic (following suggestions by F. Catanese and R. Lazarsfeld),
but the analytic formulation apparently has a wider range of applicability.

These notes are essentially written with the idea of serving as an analytic tool-
box for algebraic geometry. Although efficient algebraic techniques exist, our feeling
is that the analytic techniques are very flexible and offer a large variety of guidelines
for more algebraic questions (including applications to number theory which are not
discussed here). We made a special effort to use as little prerequisites and to be as
self-contained as possible; hence the rather long preliminary sections dealing with
basic facts of complex differential geometry. The reader wishing to have a presenta-
tion of the algebraic approach to vanishing theorems and linear series is referred to
the excellent notes written by R. Lazarsfeld [Laz93]. In the last years, there has been
a continuous and fruitful interplay between the algebraic and analytic viewpoints on
these questions, and I have greatly benefitted from observations and ideas contained
in the works of J. Kollar, L. Ein, R. Lazarsfeld and Y.T. Siu. I would like to thank

them for their interest in my work and for their encouragements.



1. Preliminary Material

1.A. Dolbeault Cohomology and Sheaf Cohomology

Let X be a C-analytic manifold of dimension n. We denote by A”¢T% the bundle of
differential forms of bidegree (p, ¢) on X, i.e., differential forms which can be written
as

U= Z ‘U]’JdZ]/\dEJ.

l=p,|J|=4q
Here (z1,...,2n) denote arbitrary local holomorphic coordinates, I = (iy,...,1p),
J =(J1,-.-,Jq) are multiindices (increasing sequences of integers in the range

(1,...,n], of lengths |I| = p, |J| = q), and
dzy :=dz,-l/\.../\dz,'p, EJZZdEjl/\.../\d'qu.

Let £P'7 be the sheaf of germs of complex valued differential (p, ¢)-forms with C'*°
coefficients. Recall that the exterior derivative d splits as d = d' + d"’ where
d'u = Our,y

[I|=p,|J|=¢,1<k<n

dzp Ndzy Ndz g,
2k

Oup, g
d"u = Z a_' dzy Ndzp ANdz g
I=p, | J|=g,1<k<n © F

are of type (p+1,q), (p, g+ 1) respectively. The well-known Dolbeault-Grothendieck
lemma asserts that any d”-closed form of type (p,q) with ¢ > 0 is locally d"-exact
(this is the analogue for d” of the usual Poincaré lemma for d, see e.g. Hérmander
1966). In other words, the complex of sheaves (£P°,d") is exact in degree ¢ > 0;
in degree ¢ = 0, Kerd"” is the sheaf £2% of germs of holomorphic forms of degree p
on X.

More generally, if F is a holomorphic vector bundle of rank r over X, there
is a natural d” operator acting on the space C*°(X, APTy ® F') of smooth (p, g)-
forms with values in F; if s = ), ., ., saex is a (p, ¢)-form expressed in terms of a
local holomorphic frame of F, we simply define d”s := }_ d"s) ® ex, observing that
the holomorphic transition matrices involved in changes of holomorphic frames do
not affect the computation of d”. It is then clear that the Dolbeault-Grothendieck
lemma still holds for F-valued forms. For every integer p = 0,1,...,n, the Dolbeault
Cohomology groups HP9(X,F) are defined to be the cohomology groups of the
complex of global (p, q) forms (graded by ¢):

(1.1) HPY(X,F) = H(C®(X, A»*T% @ F)).

Now, let us recall the following fundamental result from sheaf theory (De Rham-Weil
isomorphism theorem): let (£®,d) be a resolution of a sheaf A by acyclic sheaves,
i.e. a complex of sheaves (L£*,§) such that there is an exact sequence of sheaves

i.opo 87 a1 q¢ ¢ +1
0—A —L —L — - — L L1777 —

and H*(X,L?) =0 for all ¢ > 0 and s > 1. Then there is a fonctorial isomorphism



(1.2) HY(I(X,L*) — HIY(X,A).

We apply this to the following situation: let £(F)P? be the sheaf of germs of C'*°
sections of APT% @ F, Then (E(F)?*,d") is a resolution of the locally free Ox-
module 2% @ O(F) (Dolbeault-Grothendieck lemma), and the sheaves £(F)P9 are
acyclic as modules over the soft sheaf of rings C*°. Hence by (1.2) we get

(1.3) Dolbeault Isomorphism Theorem (1953). For every holomorphic vector bundle
F on X, there is a canonical 1somorphism

HP(X,F) ~ HY(X, 2% @ O(F)). o

If X is projective algebraic and F' is an algebraic vector bundle, Serre’s GAGA
theorem [Ser56] shows that the algebraic sheaf cohomology group H? (X, 2% @ O(F))
computed with algebraic sections over Zariski open sets is actually isomorphic to
the analytic cohomology group. These results are the most basic tools to attack
algebraic problems via analytic methods. Another important tool is the theory of
plurisubharmonic functions and positive currents originated by K. Oka and P. Lelong
in the decades 1940-1960.

1.B. Plurisubharmonic Functions

Plurisubharmonic functions have been introduced independently by Lelong and Oka
in the study of holomorphic convexity. We refer to [Lel67, 69] for more details.

(1.4) Definition. A function u : 2 — [—o00, +00[ defined on an open subset 2 C C"
18 said to be plurisubharmonic (psh for short) if

a) u 18 upper semicontinuous ;

b) for every complez line L C C*, ujnnr is subharmonic on 2N L, that is, for all
a € 2 and € € C* with |€| < d(a,C92), the function u satisfies the mean value

inequality

2m
u(a) < ——1—/ u(a + € £) de.
27 Jo
The set of psh functions on {2 is denoted by Psh(£2).

We list below the most basic properties of psh functions. They all follow easily
from the definition.

(1.5) Basic properties.
a) Every function u € Psh(f2) is subharmonic, namely it satisfies the mean value

inequality on euclidean balls or spheres:

1
&L e z2)dM(z
< nnrn/n!/m,,,,“( JdA(2)

u(a)



1

loc ON every connected

for every a € 2 and r < d(a,C$2. Eitheru = —ocoru € L
component of f2.

b) For any decreasing sequence of psh functions uy € Psh(§2), the limit v = lim uy
is psh on 2.

c) Let u € Psh(£2) be such that u Z —oo on every connected component of 2. If
(pe) 1s a family of smoothing kernels, then u x p. is C* and psh on

2. = {1 € ;dz,00) >€},

the family (u * p.) is increasing in € and lim. o u * pe = u.

d) Let uj,...,u, € Psh(f2) and y : R» — R be a convex function such that
x(t1,...,tp) is increasing in each t;. Then x(u1,...,u,) is psh on §2. In partic-
ular uy + -+ + up, max{uy,...,up}, log(e** +--- + e"») are psh on £2. O

(1.6) Lemma. A function u € C?*(£2,R) is psh on §2 1f and only if the hermatian form
Hu(a)(é) = lej,kgn 0%u/0z;0%k(a) £;€ 1s semipositive at every point a € f2.

Proof. This is an easy consequence of the following standard formula

2m 1
u(a+ € €)df — u(a) = z/ dt Hu(a + C£)(€) dM(C),
0

2r Jo s t Jici<t

where d)\ is the Lebesgue measure on C. Lemma 1.6 is a strong evidence that
plurisubharmonicity is the natural complex analogue of linear convexity. a

For non smooth functions, a similar characterization of plurisubharmonicity can
be obtained by means of a regularization process.

(1.7) Theorem. If u € Psh(f2), u # —oo on every connected component of {2, then
for all € C*
Hue) = Y i gfen(o)
T L 0z;0% 0k
1<5,k<n
18 a positive measure. Conversely, if v € D'(§2) is such that Hv(€) is a positive

measure for every £ € C", there exists a unique function u € Psh(§2) which s
locally integrable on §2 and such that v is the distribution associated to u. O

In order to get a better geometric insight of this notion, we assume more gen-
erally that u is a function on a complex n-dimensional manifold X. If & : X —» Y is
a holomorphic mapping and if v € C*(Y,R), we have d'd" (v o &) = #*d’d"v, hence

H(vo®)(a,f) = Hv(®(a), ' (a).f).

In particular Hu, viewed as a hermitian form on Ty, does not depend on the choice
of coordinates (zy,.. ., zn). Therefore, the notion of psh function makes sense on any
complex manifold. More generally, we have



(1.8) Proposition. If & : X — Y s a holomorphic map and v € Psh(Y'), then
vod € Psh(X). a

(1.9) Example. It is a standard fact that log |z| is psh (i.e. subharmonic) on C. Thus
log | f| € Psh(X) for every holomorphic function f € H°(X,Ox). More generally

log (|f1]** + -+ + |f,|%?) € Psh(X)

for every f; € H°(X,0Ox) and a; > 0 (apply Property 1.5d with u; = a; log|f;|).
We will be especially interested in the singularities obtained at points of the zero
variety fi = ... = f, =0, when the a; are rational numbers. O

(1.10) Definition. A psh function u € Psh(X) will be said to have analytic singular-
wties if u can be written locally as

w=2log (Ll* +-+- + Ifwl?) + v,

where a € Ry, v s a locally bounded function and the f; are holomorphic functions.
If X s algebraic, we say that u has algebraic singularities if u can be written as
above on sufficiently small Zariski open sets, with o € Q4 and f; algebraic.

We then introduce the ideal J = J(u/a) of germs of holomorphic functions h
such that |h| < Ce*/* for some constant C, i.e.

|| < C(Ifil+ -+ fnl)-

This is a globally defined ideal sheaf on X, locally equal to the integral closure T of
the ideal sheaf T = (fi,..., fn), thus J is coherent on X. If (¢1,...,gn') are local
generators of J, we still have

o
u=3log(lgi]* + -+ lgn[*) + O(1).

If X is projective algebraic and u has analytic singularities with a € Q4, then
u automatically has algebraic singularities. From an algebraic point of view, the
singularities of u are in 1:1 correspondence with the “algebraic data” (J,«). Later
on, we will see another important method for associating an ideal sheaf to a psh

function.

(1.11) Exercise. Show that the above definition of the integral closure of an ideal
7 is equivalent to the following more algebraic definition: Z consists of all germs h
satisfying an integral equation

hd—l-a]h.d_l+...+ad_1h+ad:0, akEIk.

Hint. One inclusion is clear. To prove the other inclusion, consider the normalization
of the blow-up of X along the (non necessarily reduced) zero variety V(Z). d



1.C. Positive Currents

The reader can consult [Fed69] for a more thorough treatment of current theory.
Let us first recall a few basic definitions. A current of degree ¢ on an oriented
differentiable manifold M is simply a differential ¢-form @ with distribution co-
efficients. The space of currents of degree q over M will be denoted by D'7(M).
Alternatively, a current of degree ¢ can be seen as an element @ in the dual space
D,(M) := (D”(}VI))’ of the space DP(M) of smooth differential forms of degree
p = dim M — ¢ with compact support; the duality pairing is given by

(1.12) (@,a) = /M OANa, a€DP(M).

A basic example is the current of integration [S] over a compact oriented submanifold

S of M:
(1.13) ([S],a) = / a, dega =p=dimgS5.
S

Then [S] is a current with measure coefficients, and Stokes’ formula shows that
d[S] = (=1)?71[8S], in particular d[S] = 0 if S has no boundary. Because of this
example, the integer p is said to be the dimension of ©@ when @ € D,(M). The
current @ is said to be closed if dO = 0.

On a complex manifold X, we have similar notions of bidegree and bidimension;
as in the real case, we denote by

DPUX) =D}, uoX), n=dimX,

the space of currents of bidegree (p, ¢) and bidimension (n—p,n—q) on X. According
to [Lel57], a current © of bidimension (p, p) is said to be (weakly) positive if for every
choice of smooth (1,0)-forms ay,...,a, on X the distribution

(1.14) O Niag Aay A...Niay AN@, is a positive measure.

(1.15) Exercise. If O is positive, show that the coefficients @y ; of © are complex
measures, and that, up to constants, they are dominated by the trace measure

. . .
70 =0 N 1" = 277N 01, B=sdd"P=5 Y dynds,

“1<i<n

which is a positive measure.
Hint. Observe that ) @p  is invariant by unitary changes of coordinates and that
the (p, p)-forms iy A@; A ... Aia, A @, generate APPTE, as a C-vector space. O

A current @ = i21<]~‘k<n Ojkdzj A dzi of bidegree (1,1) is easily seen to be
positive if and only if the complex measure 3 A;A\t@,x is a positive measure for
every n-tuple (A\;,...,\,) € C".

(1.16) Example. If u is a (not identically —oo) psh function on X, we can associate
with u a (closed) positive current @ = i90u of bidegree (1,1). Conversely, every



closed positive current of bidegree (1,1) can be written under this form on any open
subset 2 C X such that H3 z(2,R) = H'(£2,0) = 0, e.g. on small coordinate balls
(exercise to the reader). O

It is not difficult to show that a product @; A ... A @, of positive currents of
bidegree (1,1) is positive whenever the product is well defined (this is certainly the
case if all ©; but one at most are smooth; much finer conditions will be discussed
in Section 2).

We now discuss another very important example of closed positive current. In
fact, with every closed analytic set A C X of pure dimension p is associated a current
of integration

(1.17) ([A], ) = /‘ a, a€eDPP(X),

reg

obtained by integrating over the regular points of A. In order to show that (1.17) is
a correct definition of a current on X, one must show that Aeg has locally finite area
in a neighborhood of Ag,g. This result, due to [Lel57] is shown as follows. Suppose
that 0 is a singular point of A. By the local parametrization theorem for analytic
sets, there is a linear change of coordinates on C" such that all projections

define a finite ramified covering of the intersection A N A with a small polydisk
A in C* onto a small polydisk Ay in C?. Let n; be the sheet number. Then the
p-dimensional area of AN A is bounded above by the sum of the areas of its projec-
tions counted with multiplicities, i.e.

Area(AN A) < ZnIVoI(A[).

The fact that [A] is positive is also easy. In fact
ia] AQ1 AL ANiay AT, = |det(aji)|iwg AWy A ... Adw, AT,

if aj = 3 ajrdwy in terms of local coordinates (wy, ..., w,) on Areg. This shows that
all such forms are > 0 in the canonical orientation defined by iwy AW A. .. Alw, ATWp.
More importantly, Lelong [Lel57] has shown that [4] is d-closed in X, even at points
of Aging. This last result can be seen today as a consequence of the Skoda-El Mir
extension theorem. For this we need the following definition: a complete pluripolar
set is a set E such that there is an open covering (§2;) of X and psh functions u;
on §2; with EN £2; = u]-_](—oo). Any (closed) analytic set is of course complete
pluripolar (take u; as in Example 1.9).

(1.18) Theorem (Skoda [Sko81], El Mir [EM84], Sibony [Sib85]). Let E be a closed
complete pluripolar set in X, and let © be a closed positive current on X \ E such
that the coefficients Or ; of © are measures with locally finite mass near E. Then
the trivial extension @ obtained by extending the measures O 7 by 0 on E is still
closed on X.
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Lelong’s result d[A] = 0 is obtained by applying the Skoda-El Mir theorem to
O = [Areg] on X N Aging-

Proof of Theorem 1.18. The statement is local on X, so we may work on a small
open set §2 such that EN 2 = v~!(—o00), v € Psh(§2). Let x : R — R be a convex
increasing function such that x(¢) = 0 for ¢ < —1 and x(0) = 1. By shrinking {2
and putting vy = x(k~1v % p.,) with e, — 0 fast, we get a sequence of functions
vr € Psh(£2) N C>°(£2) such that 0 < vy < 1, vx = 0 in a neighborhood of E N 2
and limvg(z) = 1 at every point of 2 \ E. Let § € C*([0,1]) be a function such
that 6 =0 on [0,1/3],6 =1 on [2/3,1] and 0 < < 1. Then 6 o vy = 0 near EN 2
and fovx — 1 on 2 ~ E. Therefore O = limg 4 00(0 0 v1 )@ and
dO= lim OAd(6ouv)

k—+o0c

in the weak topology of currents. It is therefore sufficient to verify that @ A d'(6 o vk )
converges weakly to 0 (note that d”© is conjugate to d'@, thus d”© will also vanish).

Assume first that ©@ € D"~1"~1(X). Then @ A d'(f o vx) € D'™""1(2), and

we have to show that

(OAd(Bovy), @) = (0,0 (vk)dvp A@) —s 0, Vae D"O(N2).

k—+o00

As v — (O,i7A7) is a non-negative hermitian form on D'°(42), the Cauchy-Schwarz
inequality yields

(0,18 AT)|* < (0,18 AB) (6,7 AF), B,y € D).
Let ¢ € D(£2), 0 < ¥ < 1, be equal to 1 in a neighborhood of Supp a. We find
(0,6 (vi)d'vx A @)|* < (O, pid'vi Ad"v) (©,6(vk)%ia A G).

By hypothesis [, @ Aia A@ < 400 and 6'(vk) converges everywhere to 0 on {2,
thus (O, 8’ (vk)2ia A@) converges to 0 by Lebesgue’s dominated convergence theorem.

On the other hand
id'd"v: = 2vgid'd" vk + 2id'vi A d"vk > 2id'vi A d"vg,
200, bid'v A d"vi) < (0, ¥id' d"v}).

As ¢ € D(R2), vk = 0 near E and dO = 0 on 2 \ E, an integration by parts yields

(0, vid'd"vE) = (@, viid'd"}) < C 1@ < +o0
N\FE

where C is a bound for the coefficients of id’d"v. Thus (O, ¥id'vi Ad"vi) is bounded,
and the proof is complete when @ € D'"~1:n~1,

In the general case © € D'PP, p < n, we simply apply the result already proved
to all positive currents @ Ay € D"~ 1"~1 where v = ivi AJ; A oo Alyn—p—1, A
Yn_p_1 Tuns over a basis of forms of A"~P~H""PTITE with constant coefficients
(Lemma 1.4). Then we get d(©@ Av) = dO A~ = 0 for all such 7, hence d®@=0. O
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(1.19) Corollary. Let @ be a closed positive current on X and let E be a com-
plete pluripolar set. Then 1@ and 1x g©@ are closed positive currents. In fact,
O = 1x g0 1s the trivial extension of O1x g to X, and 1@ = O — 0. 0O

As mentioned above, any current @ = id'd"u associated with a psh function u is
a closed positive (1, 1)-current. In the special case u = log | f| where f € H°(X,Ox)
is a non zero holomorphic function, we have the important

1.20) Lelong-Poincaré equation. Let f € H°(X,Ox) be a non zero holomorphic
4 P
function, Zy = > m;Z;, mj € N, the zero divisor of f and [Zf] = 5" m;[Z]] the

associated current of integration. Then

~0dlog|f| = [Z).

Proof (sketch). 1t is clear that id’'d"log|f| = 0 in a neighborhood of every point
z ¢ Supp(Zs) = | Zj, so it is enough to check the equation in a neighborhood of
every point of Supp(Zy). Let A be the set of singular points of Supp(Zy), i.e. the
union of the pairwise intersections Z; N Zx and of the singular loci Zj4ing; we thus
have dim A < n — 2. In a neighborhood of any point x € Supp(Zs) \ A there are
local coordinates (zy,...,2,) such that f(z) = z;n’ where m is the multiplicity of f
along the component Z; which contains z and z; = 0 is an equation for Z; near .
Hence

~d'd" log |f| = m_,'Ld'd" log |z1| = m;j[Z;]
m T

in a neighborhood of z, as desired (the identity comes from the standard formula
1d'd"log|z| = Dirac measure & in C). This shows that the equation holds on
X \ A. Hence the difference 1d’d" log |f| — [Zy] is a closed current of degree 2 with
measure coefficients, whose support is contained in A. By Exercise 1.21, this current
must be 0, for A has too small dimension to carry its support (A is stratified by
submanifolds of real codimension > 4). O

(1.21) Exercise. Let © be a current of degree g on a real manifold M, such that
both @ and d@ have measure coefficients (“normal current”). Suppose that Supp @
is contained in a real submanifold A with codimg A > ¢q. Show that @ = 0.

Hint: Let m = dimg M and let (z;,...,z,) be a coordinate system in a neighbor-
hood 2 of a point a € A such that AN = {z; =... = zx = 0}, k > q. Observe
that ;0 = z;dO = 0 for 1 < j < k, thanks to the hypothesis on supports and on
the normality of @, hence dz; A © = d(z;0) — r;dO© =0, 1 < j < k. Infer from this
that all coefficients in © = 37 ;_, ©rdz; vanish. O

We now recall a few basic facts of slicing theory (the reader will profitably
consult [Fed69] and [Siu74] for further developments). Let o : M — M’ be a sub-
mersion of smooth differentiable manifolds and let @ be a locally flat current on M,
that is, a current which can be written locally as @ = U + dV where U, V have

L} _ coefficients. It is a standard fact (see Federer) that every current @ such that
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both @ and d@ have measure coefficients is locally flat; in particular, closed positive
currents are locally flat. Then, for almost every &' € M’, there is a well defined slice
@, which is the current on the fiber o~1(2') defined by

9;' = lf’a—l(_rl) + (l"’r'a.—l(jl).

The restrictions of U, V to the fibers exist for almost all ' by the Fubini theorem.
The slices @, are currents on the fibers with the same degree as @ (thus of dimension
dim @ — dim (fibers)). Of course, every slice @, coincides with the usual restriction
of O to the fiber if @ has smooth coefficients. By using a regularization @, = @ xp.,
it is easy to show that the slices of a closed positive current are again closed and
positive: in fact U, ,» and V. ;s converge to U, and V» in L} (071 (z")). thus O, ,
converges weakly to @, for almost every z’. Now, the basic slicing formula is

(1.22) / (-)/\n/\a*.‘i’:/ (/ (-),.r(.r”)/\(\,0-1(1.:)(.1"'))J(.r’)
M r'eN’ r'"e€o—1(x’') *

for every smooth form a on M and J on M’', such that o has compact support and
dega = dim M — dimM' — deg @, deg 3 = dim M'. This is an easy consequence of
the usual Fubini theorem applied to U and V in the decomposition @ = U + dV’. if
we identify locally o with a projection map M = M'xM" — M' z = (2'.2") — 2,
and use a partitition of unity on the support of a.

To conclude this section, we discuss De Rham and Dolbeault cohomology theory
in the context of currents. A basic observation is that the Poincaré and Dolbeault-
Grothendieck lemma still hold for currents. Namely, if (D'?,d) and (D'(F)P4,d")
denote the complex of sheaves of degree g currents (resp. of (p,q)-currents with
values in a holomorphic vector bundle F'), we still have De Rham and Dolbeault
sheaf resolutions

0->R— D", 0— 2% @ O(F) —» D'(F)P°.
Hence we get canonical isomorphisms
(1.23) Hip(M,R)= H((I'(M,D"*),d)),
HPY(X,F)=HI(([(X,D'(F)”*),d")).
In other words, we can attach a cohomology class {@} € H{,(M,R) to any closed
current @ of degree g, resp. a cohomology class {@} € HP¥(X, F) to any d"-closed
current of bidegree (p, q). Replacing if necessary every current by a smooth represen-

tative in the same cohomology class, we see that there is a well defined cup product
given by the wedge product of differential forms

HY (M,R) x ... x H"(M,R) — HO+ -+ (M R),
({@1},....{@1}) — {O1} A ... A {On}.

In particular, if M is a compact oriented variety and ¢; + ... + ¢ = dim M, there
is a well defined intersection number

{61} {62} - - ~{9m}=/M{(-)1}/\.../\{9m}.

However, as we will see in the next section, the pointwise product @ A ... A Op,
need not exist in general.



