Lecture Notes in

Mathematics

R. Donagi B. Dubrovin
E. Frenkel E. Previato

Integrable Systems
and Quantum Groups

Montecatini Terme, 1993

Editors: M. Francaviglia, S. Greco

@) Springer

Fondazione
C.I.M.E



R. Donagi B. Dubrovin
E. Frenkel E. Previato

Integrable Systems
and Quantum Groups

Lectures given at the 1st Session of the
Centro Internazionale Matematico Estivo
(C.ILM.E.) held in Montecatini Terme, Italy,
June 14-22, 1993

Editors: M. Francaviglia, S. Greco

Springer




Authors

Ron Donagi

Department of Mathematics
University of Pennsylvania
Philadelphia, PA 19104, USA

Boris Dubrovin
SISSA

Via Beirut, 2—4
34014 Miramare, Italy

Edward Frenkel

Department of Mathemetics
Harvard University
Cambridge, MA 01610, USA

Emma Previato
Department of Mathemaitcs
Boston University

Boston, MA 02215, USA

Cataloging-in-Publication Data applied for

Editors

Mauro Francaviglia

Istituto di Fisica Matematica
“J.-L. Lagrange”

Universita di Torino

Via Carlo Alberto, 10

10123 Torino, Italy

Silvio Greco

Dipartimento di Matematica
Politecnico di Torino

Corso Duca degli Abruzzi, 24
10129 Torino, Italy

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Centro Internazionale Matematico Estivo:

Lectures given at the ... session of the Centro Internazionale

Matematico Estivo (CIME) ... - Berlin ; Heidelberg ; New

York ; London ; Paris ; Tokyo ; Hong Kong : Springer
Friiher Schriftenreihe. - Friiher angezeigt u.d.T.: Centro

Internazionale Matematico Estivo: Proceedings of the ...
Centro Internazionale Matematico Estivo (CIME)

NE: HST

session of the

1995,1. Integrable systems and quantum groups. - 1995

Integrable systems and quantum groups : held in Montecatini
Terme, Italy, June 14 - 22, 1995 / R. Donagi ... Ed.: M.
Francaviglia ; S. Greco. - Berlin ; Heidelberg ; New York ;
Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris H
Tokyo : Springer, 1995
(Lectures given at the ... session of the Centro Internazionale
Matematico Estivo (CIME) ... ; 1995,1)
(Lecture notes in mathematics ; Vol. 1620 : Subseries: Fondazione
CIME)
ISBN 3-540-60542-8
NE: Donagi, Ron; Francaviglia, Mauro [Hrsg.}; 2. GT

Mathematics Subject Classification (1991): 81R50, S8F07

ISBN 3-540-60542-8 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright

Law.

© Springer-Verlag Berlin Heidelberg 1996

Printed in Germany

Typesetting: Camera-ready TgX output by the author

SPIN: 10479683 46/3142-543210 - Printed on acid-free paper



FOREWORD

"Integrable Systems" form a classical subject having its origins in Physics
and is deeply related with almost all the most important domains of
Mathematics. Intriguing and often surprising are in fact the interplays of
Integrable Systems with Algebraic Geometry, which started perhaps with
Jacobi, to be then forgotten and discovered again in more recent years, with
a fantastic impulse to both Theoretical Physics and Pure Mathematics. A
very recent related topic is the theory of so-called "Quantum Groups", which
is nowadays generating a further incredible amount of fruitful interplay
between Physics and Mathematics, especially in the domains proper to
Geometry and Algebra.

The scientific organisers of this CIME Session have for several years been
enjoing these fascinating interrelations, also promoting and working in a
research project supported by CNR and involving geometers and
mathematical physicists from Genova, Milano, Torino and Trieste. Thus, the
idea of a CIME session on this subject was quite ripe and necessary to the
mathematical community when the proposal was worked out and promptly
accepted by CIME.

Of course it was immediately clear to us that covering all the subjects was an
impossible task. However, we were lucky enough to obtain the collaboration
of four outstanding main lecturers, coming from different research
experiences and animated by different points of view, but sharing the interest
in the crosspoint of these disciplines and extremely able to develop their
lectures with the most fascinating interdisciplinary attitude. The Course
resulted then in a stimulating and exciting experience, not only for the
participants but also for us. We really hope that the reader will find the same
excitement as we did in following these lectures, even if a book cannot
reproduce the unique atmosphere that existed in the school and surrounded
it, in a special place where quiet and friendship were at the basis of a fruitful
interaction.

The Session was held in fact in Montecatini Terme, at Villa "La Querceta",
from June 14 to June 22, 1993. It consisted of the main four courses of six
lectures each, accompanied by a number of interesting seminars concerning
special topics and/or recent research announcements.

These proceedings contain the expanded versions of the four main courses. It
took some time to collect them and recast them in their final form, but we
believe that the importance and completeness of these texts made this longer
delay worthwile. Unfortunately the lack of space has made impossible to



Vi

include also the seminars, which shall be just listed on page VIII. For an
outline of the contents of this volume we refer the reader to the Tables of
Contents and the Introductions of the four sets of lectures themselves.

We are thankful to CIME for having given us the possibility of living such
an exciting experience; we especially acknowledge the patience and the help
of our colleagues Roberto Conti and Pietro Zecca. Special thanks are also
due to our friend and collaborator Franco Magri, who was a source of
inspiration for this session and helped us to construct its scientific structure.

Mauro Francaviglia
Silvio Greco
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1 Introduction

The purpose of these notes is to present an algebro-geometric point of view on several
interrelated topics, all involving integrable systems in symplectic-algebro-geometric set-
tings. These systems range from some very old examples, such as the geodesic flow on an
ellipsoid, through the classical hierarchies of X P— and KdV-types, to some new systems
which are often based on moduli problems in algebraic geometry.

The interplay between algebraic geometry and integrable systems goes back quite a
way. It has been known at least since Jacobi that many integrable systems can be solved
explicitly in terms of theta functions. (There are numerous examples, starting with various
spinning tops and the geodesic flow on an ellipsoid.) Geometrically, this often means that
the system can be mapped to the total space of a family of Jacobians of some curves, in
such a way that the flows of the system are mapped to linear flows along the Jacobians.
In practice, these curves tend to arise as the spectrum (hence the name ‘spectral’ curves)
of some parameter-dependent operator; they can therefore be represented as branched
covers of the parameter space, which in early examples tended to be the Riemann sphere
cP.

In Hitchin’s system, the base CP! is replaced by an arbitrary (compact, non-singular)
Riemann surface X. The cotangent bundle T*Us to the moduli space Us of stable vector
bundles on ¥ admits two very different interpretations: on the one hand, it parametrizes
certain Higgs bundles, or vector bundles with a (canonically) twisted endomorphism; on
the other, it parametrizes certain spectral data, consisting of torsion-free sheaves (generi-
cally, line bundles) on spectral curves which are branched covers of . In our three central
chapters (4,5,6) we study this important system, its extensions and variants. All these
systems are linearized on Jacobians of spectral curves.

We also study some systems in which the spectral curve is replaced by a higher-
dimensional geometric object: a spectral variety in Chapter 9, an algebraic Lagrangian
subvariety in Chapter 8, and a Calabi- Yau manifold in Chapter 7. Our understanding of
some of these wild systems is much less complete than is the case for the curve-based ones.
We try to explain what we know and to point out some of what we do not. The Calabi-Yau
systems seem particularly intriguing. Not only are the tori (on which these systems are
linearized) not Jacobians of curves, they are in general not even abelian varieties. There
are some suggestive relations between these systems and the conjectural mirror-symmetry
for Calabi-Yaus.

The first three chapters are introductory. In Chapter 2 we collect the basic notions
of symplectic geometry and integrable systems which will be needed, including some infor-
mation about symplectic reduction. (An excellent further reference is [AG].) In Chapter
3 we work out in some detail the classical theory of geodesic flow on an ellipsoid, which is
integrable via hyperelliptic theta functions. We think of this both as a beautiful elemen-
tary and explicit example and as an important special case of the much more powerful
results which follow. (Our presentation follows [Kn, Re, D5]). Some of our main algebro-
geometric objects of study are introduced in Chapter 4: vector bundles and their moduli
spaces, spectral curves, and the ‘spectral systems’ constructed from them. In particular,
we consider the polynomial matriz system [AHH, B1] (which contains the geodesic flow
on an ellipsoid as special case) and Hitchin’s system [H1, H2].

Each of the remaining five chapters presents in some detail a recent or current re-



search topic. Chapter 5 outlines constructions (from [Mal, Bn, Tyl]) of the Poisson
structure on the spectral system of curves. This is possible whenever the twisting line
bundle K is a non-negative twist wg(D) of the canonical bundle wg, and produces an
algebraically completely integrable Hamiltonian system. Following [Mal] we emphasize
the deformation-theoretic construction, in which the Poisson structure on an open subset
of the system is obtained via symplectic reduction from the cotangent bundle T*Uyg p of
the moduli space Ug,p of stable bundles with a level-D structure.

In Chapter 6 we explore the relation between these spectral systems and the KP-
hierarchy and its variants (multi-component K P, Heisenberg flows, and their KdV-type
subhierarchies). These hierarchies are, of course, a rich source of geometry: The Krichever
construction (e.g. [SW]) shows that any Jacobian can be embedded in K P-space, and
these are the only finite-dimensional orbits [Mul, AdC, Sh]. Following [AB, LM1] we
describe some “multi-Krichever” constructions which take spectral data to the spaces of
the K P, mcK P and Heisenberg systems. Our main new result is that the flows on the
spectral system which are obtained by pulling back the mcK P or Heisenberg flows via
the corresponding Krichever maps are Hamiltonian with respect to the Poisson structure
constructed in Chapter 5. In fact, we write down explicitly the Hamiltonians for these
K P flows on the spectral system, as residues of traces of meromorphic matrices. (Some
related results have also been obtained recently in [LM2].)

The starting point for Chapter 7 is an attempt to understand the condition for a
given family of complex tori to admit a symplectic structure and thus become an ACIHS.
We find that the condition is a symmetry on the derivatives of the period map, which
essentially says that the periods are obtained as partials of some field of symmetric cubic
tensors on the base. In the rest of this Chapter we apply this idea to an analytically
(not algebraically) integrable system constructed from any family of Calabi-Yau 3-folds.
Some properties of this system suggest that it may be relevant to a purely hodge-theoretic
reformulation of the mirror-symmetry conjectures. (This chapter is based on [DM].)

Chapter 8 is devoted to the construction of symplectic and Poisson structures in
some inherently non-linear situations, vastly extending the results of Chapter 5. The
basic space considered here is the moduli space parametrizing line-bundle-like sheaves
supported on (variable) subvarieties of a given symplectic space X. It is shown that when
the subvarieties are Lagrangian, the moduli space itself becomes symplectic. The spectral
systems considered in Chapter 5 can be recovered as the case where X is the total space
of T*T and the Lagrangian subvarieties are the spectral curves. (A fuller version of these
results will appear in [Ma2].)

In the final chapter we consider extensions of the spectral system to allow a higher-
dimensional base variety S, an arbitrary reductive group G, an arbitrary representation
p: G = AutV, and values in an arbitrary vector bundle K. (Arbitrary reductive groups
G were considered, over a curve S = ¥ with K = wg, by Hitchin [H2], while the case
K = Qg over arbitrary base S is Simpson’s [Sim1]). We replace spectral curves by various
kinds of spectral covers, and introduce the cameral cover, a version of the Galois-closure
of a spectral cover which is independent of K and p. It comes with an action of W,
the Weyl group of G. We analyze the decomposition, under the action of W, of the
cameral and spectral Picard varieties, and identify the distinguished Prym in there. This
is shown to correspond, up to certain shifts and twists, to the fiber of the Hitchin map
in this general setting, i.e. to moduli of Higgs bundles with a given S. Combining this



with some obvious remarks about existence of Poisson structures, we find that the moduli
spaces of K-valued Higgs bundles support algebraically completely integrable systems.
Our presentation closely follows that of [D4]

It is a pleasure to express our gratitude to the organizers, Mauro Francaviglia and
Silvio Greco, for the opportunity to participate in the CIME meeting and to publish
these notes here. During the preparation of this long work we benefited from many
enjoyable conversations with M. Adams, M. Adler, A. Beauville, R. Bryant, C. L. Chai,
I. Dolgachev, L. Ein, B. van Geemen, A. Givental, M. Green, P. Griffiths, N. Hitchin, Y.
Hu, S. Katz, V. Kanev, L. Katzarkov, R. Lazarsfeld, P. van Moerbeke, D. Morrison, T.
Pantev, E. Previato and E. Witten.



2 Basic Notions

We gather here those basic concepts and elementary results from symplectic and Poisson
geometry, completely integrable systems, and symplectic reduction which will be helpful
throughout these notes. Included are a few useful examples and only occasional proofs or
sketches. To the reader unfamiliar with this material we were hoping to impart just as
much of a feeling for it as might be needed in the following chapters. For more details,
we recommend the excellent survey [AG].

2.1 Symplectic Geometry

Symplectic structure

A symplectic structure on a differentiable manifold M of even dimension 2n is given by
a non-degenerate closed 2-form o. The non degeneracy means that either of the following
equivalent conditions holds.

e ¢" is a nowhere vanishing volume form.
o Contraction with o induces an isomorphism |o : TM — T*M

e For any non-zero tangent vector v € T,, M at m € M, there is some v' € T,, M such

that o(v,v') # 0.
Examples 2.1

1. Euclidean space

The standard example of a symplectic manifold is Euclidean space R?* with o =

Ydp; A dg;, where py,--+,Pn, @1, ,qn are linear coordinates. Darboux’s theorem
says that any symplectic manifold is locally equivalent to this example (or to any
other).

2. Cotangent bundles

For any manifold X, the cotangent bundle M := T*X has a natural symplectic
structure. First, M has the tautological 1-form a, whose value at (z,0) € T*X is 0
pulled back to T*M. If qi,- - - , g, are local coordinates on X, then locally @ = Zp;dg;
where the p; are the fiber coordinates given by 9/d¢;. The differential

o :=da

is then a globally defined closed (even exact) 2-form on M. It is given in local
coordinates by Zdp; A dg;, hence is non-degenerate.

3. Coadjoint orbits

Any Lie group G acts on its Lie algebra g (adjoint representation) and hence on the
dual vector space g* (coadjoint representation). Kostant and Kirillov noted that for
any £ € g*, the coadjoint orbit © = G¢ C g* has a natural symplectic structure.
The tangent space to O at £ is given by g/g,, where g is the stabilizer of ¢:

ge:={r€gladi{=0}={zeg]|({[zy) =0 Vyeg}



Now ¢ determines an alternating bilinear form on g

z,y+— (& [z,9]),

which clearly descends to g/ge and is non-degenerate there. Varying £ we get a
non-degenerate 2-form ¢ on (0. The Jacobi identity on g translates immediately
into closedness of o.

Hamiltonians
To a function f on a symplectic manifold (M, o) we associate its Hamiltonian vector
field vy, uniquely determined by

vy | o =df.

A vector field v on M is Hamiltonian if and only if the 1-form v | o is exact. We say v is
locally Hamiltonian if v | o is closed. This is equivalent to saying that the flow generated
by v preserves o. Thus on a symplectic surface (n = 1), the locally Hamiltonian vector
fields are the area-preserving ones.

Example: (Geodesic flow)

A Riemannian metric on a manifold X determines an isomorphism of M := TX with
T*X; hence we get on M a natural symplectic structure together with a C* function f =
(squared length). The geodesic flow on X is the differential equation, on M, given by the
Hamiltonian vector field vy. Its integral curves are the geodesics on M.

Poisson structures
The association f +— vy gives a map of sheaves

v:C®(M) — V(M) (1)

from C* functions on the symplectic manifold M to vector fields. Now V(M) always
has the structure of a Lie algebra, under commutation of vector fields. The symplectic
structure on M determines a Lie algebra structure on C*°(M) such that v becomes a
morphism of (sheaves of) Lie algebras. The operation on C®(M), called Poisson bracket,

18
(.9} = (df,vg) = —(dg, vy) = "F AN

More generally, a Poisson structure on a manifold M is a Lie algebra bracket {, } on
C>(M) which acts as a derivation in each variable:

{f,gh} ={f,g}h+{f,h}g, f,g,h € C>(M).

Since the value at a point m of a given derivation acting on a function g is a linear function
of d,,g, we see that a Poisson structure on M determines a global 2-vector

a-’l

2
¥ € H(M,A TM).
or equivalently a skew-symmetric homomorphism

v:T"M — TM.



Conversely, any 2-vector 1 on M determines an alternating bilinear bracket on C*(M),
by

{f.9} = (df Adg, ),
and this acts as a derivation in each variable. An equivalent way of specifying a Poisson
structure is thus to give a global 2-vector ¢ satisfying an integrability condition (saying
that the above bracket satisfies the Jacobi identity, hence gives a Lie algebra).

We saw that a symplectic structure o determines a Poisson bracket { , }. The cor-
responding homomorphism ¥ is just (|o)~!; the closedness of o is equivalent to inte-
grability of 4. Thus, a Poisson structure which is (i.e. whose 2-vector is) everywhere
non-degenerate, comes from a symplectic structure.

A general Poisson structure can be degenerate in two ways: first, there may exist
non-constant functions f € C*(M), called Casimirs, satisfying

0 =dfJ¢ = ¥(df),

{f,g} =0 for all g € C™(M).

This implies that the rank of ¥ is less than maximal everywhere. In addition, or instead,
rank ¥ could drop along some strata in M. For even r, let

M, := {m € M|rank(¥) =r}.

Then a basic result [We] asserts that the M, are submanifolds, and they are canonically
foliated into symplectic leaves, i.e. r-dimensional submanifolds Z C M, which inherit
a symplectic structure. (This means that the restriction ¥, is the image, under the
inclusion Z — M,, of a two-vector 1z on Z which is everywhere nondegenerate, hence
comes from a symplectic structure on Z.) These leaves can be described in several ways:

o The image ¥(T™M,) is an involutive subbundle of rank r in TM,; the Z are its
integral leaves.

o The leaf Z through m € M, is Z = {z € M,|f(m) = f(z) for all Casimirs f on M,}.

e Say that two points of M are 1)-connected if there is an integral curve of some Hamil-
tonian vector field passing through both. The leaves are the equivalence classes for
the equivalence relation generated by i-connectedness.

Example 2.2 The Kostant-Kirillov symplectic structures on coadjoint orbits of a Lie
algebra g extend to a Poisson structure on the dual vector space g*. For a function
F € C*(g*) we identify its differential d;F' at £ € g+ with an element of g = g**. We
then set:
{F,G}(§) = (& [de F, deG).

This is a Poisson structure, whose symplectic leaves are precisely the coadjoint orbits. The
rank of g is, by definition, the smallest codimension £ of a coadjoint orbit. The Casimirs
are the ad-invariant functions on g*. Their restrictions to the largest stratum g§;.,5_,
foliate this stratum, the leaves being the regular (i.e. largest dimensional) coadjoint
orbits.



2.2 Integrable Systems

We say that two functions hy, hy on a Poisson manifold (M, ) Poisson commute if their
Poisson bracket {h;, ho} is zero. In this case the integral flow of the Hamiltonian vector
field of each function h;, ¢ = 1,2 is tangent to the level sets of the other. In other words, h,
is a conservation law for the Hamiltonian h; and the Hamiltonian flow of h is a symmetry
of the Hamiltonian system associated with (M, v, h;) (the flow of the Hamiltonian vector
field vy, on M).

A map f : M - B between two Poisson manifolds is a Poisson map if pullback of
functions is a Lie algebra homomorphism with respect to the Poisson bracket

f{F,G}s = {f°F, f*G}u.

Equivalently, if df () equals f*(vp) as sections of f‘(/z\ Tg). If H: M — B is a Poisson
map with respect to the trivial (zero) Poisson structure on B we will call H a Hamiltonian
map. Equivalently, H is Hamiltonian if the Poisson structure 1 vanishes on the pullback
H*(T*B) of the cotangent bundle of B (regarding the latter as a subbundle of (T* M, v)).
In particular, the rank of the differential dH is less than or equal to dim M —  rank(y) at
every point. A Hamiltonian map pulls back the algebra of functions on B to a commutative
Poisson subalgebra of the algebra of functions on M.

The study of a Hamiltonian system (M, v, h) simplifies tremendously if one can extend
the Hamiltonian function h to a Hamiltonian map H : M — B of maximal rank dim M —
%rank(tp). Such a system is called a completely integrable Hamiltonian system. The
Hamiltonian flow of a completely integrable system can often be realized as a linear flow
on tori embedded in M. The fundamental theorem in this case is Liouville’s theorem
(stated below).

Definition 2.3 1. Let V bea vector space, o e/z\ V* a (possibly degenerate) two form.
A subspace Z C V is called isotropic (coisotropic) if it is contained in (contains)
its symplectic complement. Equivalently, Z is isotropic if o restricts to zero on Z.
If o is nondegenerate, a subspace Z C V is called Lagrangian if it is both isotropic
and coisotropic. In this case V is even (say 2n) dimensional and the Lagrangian
subspaces are the n dimensional isotropic subspaces.

2. Let (M,0) be a symplectic manifold. A submanifold Z is isotropic (respectively
coisotropic, Lagrangian) if the tangent subspaces T,Z are, for all z € Z.

Example 2.4 For every manifold X, the fibers of the cotangent bundle T*X over points
of X are Lagrangian submanifolds with respect to the standard symplectic structure. A
section of T*X over X is Lagrangian if and only if the corresponding 1-form on X is
closed.

We will extend the above definition to Poisson geometry:

Definition 2.5 1. Let U be a vector space, 9 an element of/2\ U. Let V C U be the
image of the contraction | ¢ : U* — U. Let W C U* be its kernel. W is called

2
the null space of . % is in fact a nondegenerate element of A V giving rise to
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2 . . .

a symplectic form ¢ €A V* (its inverse). A subspace Z C U is Lagrangian with
respect to 1 if Z is a Lagrangian subspace of V' C U with respect to 0. Equivalently,
Z is Lagrangian if (U/Z)* is both an isotropic and a coisotropic subspace of U* with

2 2
respect to ¥ €A U =A (U*)*.

2. Let (M, ) be a Poisson manifold, assume that 3 has constant rank (this condition
will be relaxed in the complex analytic or algebraic case). A submanifold Z C M
is Lagrangian if the tangent subspaces T,Z are, for all z € Z. Notice that the
constant rank assumption implies that each connected component of Z is contained
in a single symplectic leaf.

Theorem 2.6 (Liouville). Let M be an m-dimensional Poisson manifold with Poisson
structure v of constant rank 2g. Suppose that H : M — B is a proper submersive
Hamiltonian map of mazimal rank, i.e, dim B =m — g. Then

i) The null foliation of M is induced locally by a foliation of B (globally if H has connected
fibers).

ii) The connected components of fibers of H are Lagrangian compact tori with a natural
affine structure.

iii) The Hamiltonian vector fields of the pullback of functions on B by H are tangent to
the level tori and are translation invariant (linear).

Remark 2.7 : If H is not proper, but the Hamiltonian flows are complete, then the
fibers of H are generalized tori (quotients of a vector space by a discrete subgroup, not
necessarily of maximal rank).

Sketch of proof of Liouville’s theorem:

i) Since H is a proper submersion the connected components of the fibers of H are smooth
compact submanifolds. Since H is a Hamiltonian map of maximal rank m — g, the
pullback H*(T3) is isotropic and coisotropic and hence H is a Lagrangian fibration.
In particular, each connected component of a fiber of H is contained in a single
symplectic leaf.

ii),iii) Let Aj be a connected component of the fiber H=1(b). Let 0 — Ty, — TM'A,, A8,

(TyB) ® O4, — 0 be the exact sequence of the differential of H. Part i) implies
that the null subbundle Wiy, := Ker[¥ : T*M — TM])4, is the pullback of a
subspace W, of TyB. Since H is a Lagrangian fibration, the Poisson structure
induces a surjective homomorphism ¢;, : H*(Ty B) = T4, inducing a trivialization
(z‘b : (T;B/Wb) ®0Ab N3 TA..

A basis of the vector space Ty B/W, corresponds to a frame of global independent
vector fields on the fiber A, which commute since the map H is Hamiltonian. Hence
Ay is a compact torus.

0



