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Preface

It is well understood that the choice of experimental conditions for distributed
systems has a significant bearing upon the accuracy achievable in parameter-
estimation experiments. Since for such systems it is impossible to observe
their states over the entire spatial domain, close attention has been paid to
the problem of optimally locating discrete sensors to estimate the unknown
parameters as accurately as possible. Such an optimal sensor-location prob-
lem has been widely investigated by many authors since the beginning of the
1970s (for surveys, see [135,145,237,298,307|), but the existing methods are
either restricted to one-dimensional spatial domains for which some theoret-
ical results can be obtained for idealized linear models, or onerous, not only
discouraging interactive use but also requiring a large investment in software
development. The potential systematic approaches could be of significance,
e.g., for environmental monitoring, meteorology, surveillance, hydrology and
some industrial experiments, which are typical exemplary areas where we are
faced with the sensor-location problem, especially owing to serious limitations
on the number of costly sensors.

This was originally the main motivation to pursue the laborious research
detailed in this monograph. My efforts on optimum experimental design for
distributed-parameter systems began some fifteen years ago at a time when
rapid advances in computing capabilities and availability held promise for
significant progress in the development of a practically useful as well as the-
oretically sound methodology for such problems. At present, even low-cost
personal computers allow us to solve routinely certain computational problems
which would have been out of the question several years ago.

The aim of this monograph is to give an account of both classical and recent
work on sensor placement for parameter estimation in dynamic distributed
systems modelled by partial differential equations. We focus our attention on
using real-valued functions of the Fisher information matrix of parameters as
the performance index to be minimized with respect to the positions of point-
wise sensors. Particular emphasis is placed on determining the ‘best’ way to
guide scanning and moving sensors and making the solutions independent of
the parameters to be identified. The bulk of the material in the corresponding
chapters is taken from a collection of my original research papers. My main
objective has been to produce useful results which can be easily translated
into computer programmes. Apart from the excellent monograph by Werner
Miiller [181], which does not concern dynamic systems and has been written
from a statistician’s point of view, it is the first up-to-date and comprehensive

Xv



xvi Optimal measurement methods for DPS identification

monograph which systematizes characteristic features of the problem, analy-
ses the existing approaches and proposes a wide range of original solutions.
It brings together a large body of information on the topic, and presents it
within a unified and relatively simple framework. As a result, it should pro-
vide researchers and engineers with a sound understanding of sensor-location
techniques, or more generally, modern optimum experimental design, by of-
fering a step-by-step guide to both theoretical aspects and practical design
methods of sensor location, backed by many numerical examples.

The study of this subject is at the interface of several fields: optimum
experimental design, partial differential equations, nonlinear programming,
optimal control, stochastic processes, and numerical methods. Consequently,
in order to give the reader a clear image of the proposed approach, the adopted
strategy is to indicate direct arguments in relevant cases which preserve the
essential features of the general situation, but avoid many technicalities.

This book is organized as follows. In Chapter 1, a brief summary of concrete
applications involving the sensor-location problem is given. Some of these ex-
amples are used throughout the monograph to motivate and illustrate the
demonstrated developments. A concise general review of the existing litera-
ture and a classification of methods for optimal sensor location are presented.
Chapter 2 provides a detailed exposition of the measurement problem to be
discussed in the remainder of the book and expounds the main complications
which make this problem difficult. In Chapter 3 our main results for stationary
sensors are stated and proved. Their extensions to the case of moving internal
observations are reported in Chapter 4. Efficient original policies of activating
scanning sensors are first proposed and examined. Then optimal design mea-
sures are treated in the context of moving sensors. A more realistic situation
with nonnegligible dynamics of the vehicles conveying the sensors and various
restrictions imposed on their motions is also studied therein and the whole
problem is then formulated as a state-constrained optimal-control problem.
Chapter 5 deals with vital extensions towards sensor location with alternative
design objectives, such as prediction or model discrimination. Then Chapter 6
establishes some methods to overcome the difficulties related to the depen-
dence of the optimal solutions on the parameters to be identified. Some indi-
cations of possible modifications which can serve to attack problems generally
considered ‘hard’ are contained in Chapter 7. Chapter 8 attempts to treat
in detail some case studies which are close to practical engineering problems.
Finally, some concluding remarks are made in Chapter 9. The core chapters
of the book are accompanied by nine appendices which collect accessory ma-
terial, ranging from proofs of theoretical results to MATLAB implementations
of the proposed algorithms.

The book may serve as a reference source for researchers and practition-
ers working in various fields (applied mathematics, electrical engineering,
civil/geotechnical engineering, mechanical engineering, chemical /environment-
al engineering) who are interested in optimum experimental design, spatial
statistics, distributed parameter systems, inverse problems, numerical anal-
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ysis, optimization and applied optimal control. It may also be a textbook
for graduate and postgraduate students in science and engineering disciplines
(e.g., applied mathematics, engineering, physics/geology). As regards pre-
requisites, it is assumed that the reader is familiar with the basics of partial
differential equations, vector spaces, probability and statistics. Appendices
constitute an essential collection of mathematical results basic to the under-
standing of the material in this book.

Dariusz Ucinski
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1

Introduction

1.1 The optimum experimental design problem in
context

Distributed-parameter systems (DPSs) are dynamical systems whose state de-
pends not only on time but also on spatial coordinates. They are frequently
encountered in practical engineering problems. Examples of a thermal nature
are furnaces for heating metal slabs or heat exchangers; examples of a me-
chanical nature are large flexible antennas, aircrafts and robot arms; examples
of an electrical nature are energy transmission lines.

Appropriate mathematical modelling of DPSs most often yields partial dif-
ferential equations (PDEs), but descriptions by integral equations or integro-
differential equations can sometimes be considered. Clearly, such models in-
volve using very sophisticated mathematical methods, but in recompense for
this effort we are in a position to describe the process more accurately and
to implement more effective control strategies. Early lumping, which means
approximation of a PDE by ordinary differential equations of possibly high or-
der, may completely mask the distributed nature of the system and therefore
is not always satisfactory.

For the past forty years DPSs have occupied an important place in control
and systems theory. This position has grown in relevance due to the ever-
expanding classes of engineering systems which are distributed in nature, and
for which estimation and control are desired. DPSs, or more generally, infinite-
dimensional systems are now an established area of research with a long list
of journal articles, conference proceedings and several textbooks to its credit
[69,74,76,103,133,138,140,152,167,179,200,273,357], so the field of potential
applications could hardly be considered complete [17,151,317-319].

One of the basic and most important questions in DPSs is parameter es-
timation, which refers to the determination from observed data of unknown
parameters in the system model such that the predicted response of the model
is close, in some well-defined sense, to the process observations [200]. The
parameter-estimation problem is also referred to as parameter identification
or simply the inverse problem [118]. There are many areas of technological
importance in which identification problems are of crucial significance. The
importance of inverse problems in the petroleum industry, for example, is well
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documented [80, 138]. One class of such problems involves determination of
the porosity (the ratio of pore volume to total volume) and permeability (a
parameter measuring the ease with which the fluids flow through the porous
medium) of a petroleum reservoir based on field production data. Another
class of inverse problems of interest in a variety of areas is to determine the
elastic properties of an inhomogeneous medium from observations of reflec-
tions of waves travelling through the medium. The literature on the subject
of DPS identification is considerable. Kubrusly [144] and Polis [216] have sur-
veyed the field by systematically classifying the various techniques. A more
recent book by Banks and Kunisch [16] is an attempt to present a thorough
and unifying account of a broad class of identification techniques for DPS
models, also see [14, 320].

In order to identify the unknown parameters (in other words, to calibrate
the considered model), the system’s behaviour or response is observed with
the aid of some suitable collection of sensors termed the measurement or
observation system. In many industrial processes the nature of state variables
does not allow much flexibility as to which they can be measured. For variables
which can be measured online, it is usually possible to make the measurements
continuously in time. However, it is generally impossible to measure process
states over the entire spatial domain. For example [211], the temperature of
molten glass flowing slowly in a forehearth is described by a linear parabolic
PDE, whereas the displacements occasioned by dynamic loading on a slender
airframe can be described by linear second-order hyperbolic PDEs. In the
former example, temperature measurements are available at selected points
along the spatial domain (obtained by a pyrometer or some other device),
whereas, in the latter case, strain gauge measurements at selected points
on the airframe are reduced to yield the deflection data. In both cases the
measurements are incomplete in the sense that the entire spatial profile is
not available. Moreover, the measurements are inexact by virtue of inherent
errors of measurement associated with transducing elements and also because
of the measurement environment.

The inability to take distributed measurements of process states leads to
the question of where to locate sensors so that the information content of the
resulting signals with respect to the distributed state and PDE model be as
high as possible. This is an appealing problem since in most applications these
locations are not prespecified and therefore provide design parameters. The
location of sensors is not necessarily dictated by physical considerations or by
intuition and, therefore, some systematic approaches should still be developed
in order to reduce the cost of instrumentation and to increase the efficiency
of identifiers.

As already mentioned, the motivations to study the sensor-location problem
stem from practical engineering issues. Optimization of air quality-monitoring
networks is among the most interesting. As is well known, due to traffic
emissions, residential combustion and industry emissions, air pollution has
become a big social problem. One of the tasks of environmental protection



