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PREFACE

Since the time of Euler, partial differential equations have been used to describe
the movement of continuous media like fluids or vibration of solids. In its origins,
hydrodynamics was a largely mathematical science for which much of the the-
ories of partial differential equations of the eighteenth century were developed.
As applications and experimental studies grew more numerous enhanced even
more by a spectacular development of modern supercomputers, the rigorous
mathematical theory gave ground to numerical studies and computer experi-
ments commonly called applied mathematics of recent days. The Navier—Stokes
equations are the most frequently used as a model of linearly viscous incom-
pressible fluids (liquids) while the Euler equations play the same role for inviscid
incompressible or compressible fluids (gases). Given the number of numerical
results and successful practical applications, it comes as a striking fact how
much less is known about the solutions to these equations at a purely theoretical
level. The existence (or non-existence) of global-in-time regular solutions to the
incompressible Navier—Stokes equations when the ambient physical space is three
dimensional is one of the most challenging open problems of the modern theory
of partial differential equations. The Euler equations of a compressible fluid form
a nonlinear hyperbolic system for which any large data existence problem seems
widely open even in the class of distributional solutions. Moreover, fluids modeled
by these equations may exhibit very complicated chaotic or self-organized struc-
tures commonly denoted as “turbulent” phenomena, the understanding of which
represents one of the main challenges of modern mathematical physics. It is
hardly conceivable that any real progress in this direction could be made without
answering the basic questions of well-posedness of the underlying equations—
existence, uniqueness, stability, and continuous dependence of solutions on
the data.

This book is designed as a contribution to the mathematical theory of vis-
cous compressible fluids. In accordance with the basic principles of classical
continuum mechanics, the state of a fluid at a given time is fully characterized
by three macroscopic quantities—the density, the velocity, and the temperature.
These satisfy a system of partial differential equations expressing the conserva-
tion of mass, momentum, and energy. In the situation when the only source of
internal energy change is of purely mechanical origin; that is, when both con-
duction of heat and its generation by dissipation of mechanical energy can be
neglected, the temperature changes can be expressed in terms of the density,
and the original system reduces to the Navier—Stokes equations of a compress-
ible barotropic fluid governing the time evolution of the density and momentum.
In this model, the pressure of the fluid is given as an explicit function of the
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density. One can go even further assuming the fluid is incompressible, which
amounts to the hypothesis that the density is constant. The resulting system
of the incompressible Navier-Stokes equations contains the velocity as the only
unknown variable and represents probably the best known model problem in
mathematical fluid dynamics.

The existence of global-in-time weak solutions for the incompressible Navier—
Stokes equations was established by Leray. His notion of weak solution (1934)
preceded both the introduction of the Sobolev spaces (1936) and the generalized
derivatives (Schwartz 1944). A comparable theory for viscous compressible baro-
tropic fluids has been developed only recently by P.-L. Lions in “Mathematical
topics in fluid dynamics, II”, Oxford University Press 1998. The major discovery
made by Lions are some unexpected properties of a quantity commonly termed
as effective viscous pressure. In spite of being strongly nonlinear, the effective
viscous pressure behaves almost like it was a weakly continuous function of the
density. Such a behavior is of course reminiscent of the quantities studied in the
theory of compensated compactness but looking for a straightforward explana-
tion in terms of this theory would be more misleading than elucidating. Another
important ingredient of Lions’ approach is the concept of renormalized solution
developed in the framework of a joint programme with DiPerna (1989).

The major thrust of this book is to develop further the mathematical theory
of viscous compressible fluids pursuing two main goals:

e Global existence results for the full system of the Navier-Stokes equations
with large data supplemented with a suitable set of constitutive equations.

e Optimal existence results for the barotropic flows with respect to the
available a priori estimates.

To this end, we introduce two new tools: (i) an oscillations defect measure—to
obtain a more precise description of possible oscillations of the density component
in a sequence of (approximate) solutions; (i) a renormalized limit of a sequence
of bounded integrable functions—to cope with possible concentrations in the
temperature.

The material is organized in the following manner. Chapter 1 is devoted to a
review of the underlying physical theory. Besides the basic notions of reference
configurations, kinematics, constitutive equations, and balance laws, this part
includes an account of general pressure-density—temperature relations including
those arising in low energy nuclear physics and astrophysics. In particular, some
examples of non-monotone pressure—density constitutive laws are presented.

The basic mathematical concepts used in the book are resumed in Chapters 2
and 3. In order to underline the physical background of the function spaces, the
exact definitions introduced in Chapter 2 are followed by the energy estimates
deduced in Chapter 3 directly for any smooth solution of the underlying equa-
tions (a priori estimates). Several other fundamental concepts are also treated
at length: average continuity of weak solutions, renormalized solutions of the
continuity equation, and instantaneous values of the state variables.
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The concept of a variational solution is introduced in Chapter 4. Each equa-
tion of the full system, that means, the equation of continuity, the momentum
equation, and the energy equation, is treated separately. The basic facts of
the theory of renormalized solutions of the continuity equation are reviewed.
Moreover, the renormalized solutions of the thermal energy are introduced as a
suitable tool to deal with possible concentrations of temperature. The discussion
on the variational solutions is further developed in Chapter 5, where more delic-
ate estimates of the pressure and temperature necessary for future analysis are
obtained.

Chapter 6 is central to the book. Given the rather poor a priori estim-
ates available, the methods of weak convergence play a decisive role in the
mathematical theory to be developed in this book. Both “classical” problems
of this approach—the presence of oscillations and concentrations in sequences
of approximate solutions—are present. The well-known results of the theory of
compensated compactness are used in order to cope with possible density oscil-
lations. More specifically, the fundamental properties of the effective viscous
pressure discovered by P.-L. Lions are discussed together with an alternative
proof of “weak continuity” of this quantity via the famous div-curl lemma. Next,
the concept of oscillation defect measure is introduced, and its relation to the
propagation of oscillations and the renormalized continuity equation is estab-
lished. Furthermore, the whole machinery is applied to the crucial problem of
propagation of density oscillations in a sequence of solutions, in particular, it
is shown that the oscillations decay in time at a uniform rate independent of
the choice of initial data provided the pressure is a monotone function of the
density. The weak sequential stability (compactness) of the set of weak solutions
is established for optimal values of the “adiabatic” exponent. In particular, the
physically interesting case of the monoatomic gas in the isentropic regime in three
space dimensions can be treated—a problem left open in the up to now available
theory. Possible concentrations in the temperature are treated via the method of
renormalization (rescaling). A “renormalized” formulation of the thermal energy
equation introduced in Chapter 4 is supplemented with the concept of a renor-
malized limit, usefulness of which being demonstrated on the problem of weak
sequential stability and the study of possible concentrations of the temperature
in the thermal energy equation.

Chapter 7 contains a complete proof of the existence of global-in-time vari-
ational solutions for the full system of the Navier-Stokes equations of a viscous
compressible and heat conducting fluid under suitable restrictions imposed on
the constitutive laws. These restrictions are by no means optimal but, on the
other hand, they seem to be in a good agreement with the underlying physical
theory. Probably the most questionable hypothesis seems to be the necessity of
the viscosity coefficients to be constant in all temperature regimes. On the other
hand, as a byproduct of our approach, we derive “optimal” existence results
for the barotropic flows with respect to the available (known) a priori estimates.
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Another novelty allowed by the present method is the possibility to consider gen-
eral, not necessarily monotone, pressure-density constitutive equations arising
in applications.

This book is intended to be a compact and self-contained presentation of
the most recent results of the mathematical theory of viscous compressible flu-
ids including some applications to more specific problems. In order to place the
text in better perspective, each chapter is concluded with a section of historical
notes including references to all important and relatively new results. However,
the cited works have been chosen on the basis of selectiveness rather than com-
pleteness to keep the bibliography concise. The results presented in the book
are by no means the last word on the subject but they rather indicate possible
directions of future research.

E. Feireisl
September, 2003
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1
PHYSICAL BACKGROUND

An investigation into the behavior of a fluid in motion may be undertaken from
either a microscopic or a macroscopic point of view. If we attempt to use the
microscopic description, the position of each atom (molecule) of the fluid as well
as its velocity at a given time must be specified. In order to capture completely
the behavior of such a system, it is necessary to deal with a large number of
equations describing the motion of each individual particle.

The macroscopic approach pursued in this book reduces the number of vari-
ables to a few related to the average effects of action of many molecules. These
effects are perceived by our senses and can be measured by instruments.

From the macroscopic point of view, a fluid is always understood as a con-
tinuum occupying at a given time ¢ € R a certain spatial domain 2 in the
N-dimensional Euclidean space RY. The state of the fluid is identified through
certain observable macroscopic properties such as the density o, the velocity
field u, and the temperature ¥. These quantities will be assumed to have the
same value for a given state regardless of how the system arrived at that state.
Accordingly, the time evolution of a fluid is described through a system of par-
tial differential equations, with the time ¢t € R and the spatial position x € Q
as independent variables, and the state functions ¢ = g(¢,x), u = u(t, x), and
Y = 9{t,x) as unknowns.

1.1 Kinematics, description of motion
1.1.1 Motions

A motion of a body in continuum mechanics is described by a family of one-to-one
mappings
X(t,):Q—-Q, tel,

where I C R is a time interval, and @ C RN is a spatial domain occupied by
the body. Continuum hypothesis requires X(¢,-) to be a diffeomorphism for any
fixed time ¢ € I. It is convenient to choose a reference configuration X(t;,x) = x
for all x € Q at a certain time t; € I. Accordingly, the curve X(¢,x), t € I,
represents the trajectory of a particle occupying at the time t; a spatial position
x € . Thus the motion is visualized as mapping parts of space onto parts of
space. The reference configuration is introduced to allow us to use Euclidean
geometry of the ambient space.
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There are several ways to describe a motion but all of them are equivalent
provided the motion is smooth. Since we are concerned with the dynamics of
fluids, it is convenient to use the spatial description, usually called Fulerian,
where the time ¢ € I and the place x € Q in the ambient space play the role of
independent variables.

A smooth motion X is completely determined by a velocity fieldu : I x } —
RY through a system of equations:

3tha x) _ u(t,X(t,x)), X(tr,x)=x forxeQ, tel. (1.1)

Applying the spatial gradient operator V; = (8y,,...,0z,) to both sides of (1.1)
we get

OV X(t,x)

5t = Vou(t,X(¢,x)) V. X(¢,x), V.X(t1,)) =1,

from which we deduce

%[det V.X(4,%)] = divou(t, X(t,x))[det V. X (2, )],

where divyu = trace[V,u| denotes the divergence operator (cf. Chapter 1
of [117]).

The same relation can be written in an equivalent form as a transport
equation

0¢J + divy(Ju) = 2Jdiv;u in T x (1.2)

for the quantity J(t, X(¢,x)) = |det V,X(¢t,x)| termed specific volume.

1.1.2 Mass transport

In general, mass may be thought of as a family of non-negative measures {M,},
t € I, on Q) obeying the principle of mass conservation:

My, [X(t1, B)] = M, [X(t2, B)] (1.3)

for any Borel set B C € and ¢, t; € I. Accordingly, the distribution of mass
at each time t € I is uniquely determined by the motion X and the reference
distribution M;,.

We shall assume that M is absolutely continuous with respect to the stand-
ard Lebesgue measure; that means the mass distribution is characterized by a
density function ¢ = p(t,x), which is non-negative and locally integrable on ).
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Consequently, the relation (1.3) may be rewritten as

/ o(ty,x)dx = / o(ta,x)dx for any t1,t3 €
X(t;,B) x(tz,B)

or, equivalently,

If the motion is smooth, the same equation may be expressed with the help
of the convection theorem (see Theorem 3.1 of Chapter 1 in [95]) in the form:

jt/ o(t, x)dx + /B o(t,x)u(t,x) -nde =0 (1.4)

for any bounded domain B C §} with a sufficiently smooth boundary 8B that
the outer normal vector n = n(x) may be defined for any x € 9B.

If the density ¢ is smooth, one can use Green’s theorem to deduce the
continuity equation:

Oro+divz(pu) =0 inlxQ, (1.5)

which is a mathematical formulation of the physical principle of mass conservation.
If o is strictly positive, division of equation (1.5) by ¢? yields

D10t + div. (o7 u) = 207 div,u

which is nothing other than equation (1.2). This yields a relation between the

fluid density ¢ and the specific volume J, namely,

Q(tla X—Nl(ta X))
o(t, x)

In other words, equations (1.2) and (1.5) are equivalent provided both g and

J are smooth, and g strictly positive. The regions of zero density are usually
associated with regions of cavitation, the density being positive elsewhere.

J(t,x) = fortel, xeqQ.

1.2 Balance laws
1.2.1 FEguations of motion

The inertial nature of a fluid is expressed when we apply to a small element
Neuwton'’s second law of motion to obtain

d
4 / (ou)(t, x) dx = / olt, X)£(t, x) dx + / t(t,x,n)do, (1.6)
dt Jx(,m) X(t,B) X (,B)
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or, by virtue of the convection theorem,
d
= | (eu)(t,x)dx+ [ (eu)(t,x)u(t,x) ndx
dt Jp 8B
- / oft,x) £(t, %) dx + / £(t,%, n) do (1.7)
B aB

where the right-hand side is the resultant force acting on a volume element
B C Q. In accordance with the Fuler-Cauchy stress principle, the resultant
force can be written as the sum of an external force with density f and a simple
traction represeuted by the vector t.

The stress principle in continuum mechanics is put to use through two
fundamental laws of Cauchy (see e.g. Section 2.6 of Chapter 2 in [117]):

e There is a stress tensor T = T(¢,x) such that
t(¢,x,n) = T(¢, x)n.
e The stress tensor T is symmetric.

Accordingly, equation (1.7) takes the form
d
& (Qu)(tvx) dx + (Qu)(t’ X)U(t, X) ‘ndx
B 8B

=/ g(t,x)f(t,x)dx+/ T(t,x)ndo. (1.8)
B 8B

If all quantities are smooth, we can apply Green's theorem to obtain the
momentum equation:

O¢(on) +divy(pu®u) = div,T+ of in I x(, (1.9)

where the symbol ® stands for the tensor product, [u ® ul; ; = w;u;

1.2.2 Total energy balance

Up to this point, emphasis has been put on purely mechanical aspects of motion.
However, common experience makes it plain that mechanical action does not
always give rise to mechanical effects alone.

Taking the scalar product of (1.9) with u and using equation (1.5) we get the
mechanical energy equation

3 (elul?) + div, (elul®v) — diva(Tw) = ~T: Vout of u  (L10)
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with the specific kinetic energy %|u|2. Here, the symbol A : B stands for the scalar
product,

N
A:B= Z Ai,sz"j.
i,5=1
Equation (1.10) contains a non-conservative term T : V u which is respons-
ible for changes of internal energy e. In accordance with the first law of
thermodynamics, the inertial contribution (1.10) to the total energy of the body
has to be matched by appropriate changes of its internal energy associated with
restoring forces (e.g., with compressibility of the fluid), and energy dissipation

into heat.
The total energy

9(% ul? + 6)
is a conserved quantity satisfying an integral identity

d
dt Jx,B

= [ @@xu(tx) - atx) ndo
X (t,B)

) o(t,x) (3lu(t,x)* + e(t, x)) dx

+ / o(t,x) £(t,x) - u(t, x) dx, (1.11)
X(t,B)

where e denotes the specific internal energy, and ¢ is the energy flur directly
related to the transfer of heat.

Similarly, as above, one can use the convection theorem and Green’s formula
to deduce the energy equation:

8 (e(uf? + e)) +div, (o(2]ul? + e)u)+div.q = div,(Tu)+of -u. (1.12)

The continuity equation (1.5), the momentum equation (1.9), and the energy
equation (1.12) represent the most general system governing the time evolution
of a body in continuum mechanics.

The total energy balance (1.12) may be split into (1.10) and the internal
energy equation:

O:(ge) + divy(gen) + div,q =T : V,u. (1.13)

However, we must be careful to remember that the mechanical energy equa-
tion (1.10) was derived from the laws of mechanics, and that the total energy
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equation (1.12) and the internal energy equation (1.13) are two distinct equa-
tions with a proper physical meaning. In particular, it is worth noting that the
dissipation function T : Vu, which appears in both (1.10) and (1.13) but not in
(1.12), was derived from the differential form of Newton’s second law expressed
through (1.9), that jis, under the assumption of smoothness of the motion. We
will come back to this issue in Chapter 4 when a. variational formulation of these
equations will be discussed.

1.3 Constitutive equations

As already pointed out at the beginning of this chapter, the principal assumption
adopted in this book is that the state of a body in motion at a given instant t € I
is completely characterized by three macroscopic quantities: the density g, the
velocity u, and the temperature 9. The physical properties of a particular material
will be reflected through constitutive equations relating the state variables to
other quantities appearing in the system (1.5), (1.9), (1.12)—the stress tensor
T, the specific internal energy e, and the energy fluz q.

A well accepted mathematical definition of a fluid reads as follows: when a
shear stress is applied to any fluid, the fluid will deform continuously so long as
the shear stress is active (see e.g. [61]). Equivalently, one can say that a fluid does
not suppport shear stress when in equilibrium. Accordingly, the stress tensor T
of a general fluid obeys Siokes’ law

T =S —pl, (1.14)

where p is a scalar function termed pressure, and S denotes the wviscous stress
tensor, which characterizes the measure of resistance of the fluid to flow, As is to
be expected, viscosity represents the mechanism by which the mechanical energy
is transported into heat. The quantity T : V,u appearing as an internal energy
source on the right-hand side of (1.13) reads

T:Vzu=§8:V,u-pdiv,u,

where the former term, called the dissipative function, stands for a real (irrevers-
ible) dissipation of the mechanical energy into heat while the latter represents
the energy change due to the work of compression.

1.8.1 Viscous dissipation

There are two sources of viscous dissipation in a fluid: (i) the shear (or “genuine”)
viscosity resulting in the departure of the tensor S from its isotropic form, (ii) the
bulk viscosity related to irreversibility due to delays in attaining thermodynamic
equilibrium. The bulk viscosity results from the molecular motion relative to the
macroscopic velocity u, and it is set at zero in the case of a monoatomic gas (see
Chapter 1 of {80]). Accordingly, the viscous stress tensor S can be written as a,
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sum of two orthogonal components

S= (s - % trace[S] 11) + %,— trace[S]1, (1.15)
where the former represents the shear viscosity while the latter corresponds to
the bulk viscosity. Here, orthogonal means with respect to the standard scalar
product A : B of tensors A, B.

In accordance with the principle of material frame indifference, the viscous
stress tensor S must depend on the symmetric part D, of the velocity gradient,

Dy (u) = (Vzu+ Viub),

its invariants, and possibly other scalar state variables like ¢ and 9. If the fluid
is isotropic and

S = F(Dg(u)),
then
OS0! = F(OD,(u) Q") for any unitary matrix O € SO(N)

(see e.g. Chapter 2 of [117]).

An important class of fluids that occupies a central place in mathematical
theory is represented by linearly viscous (Navier-Stokes, Newtonian) fluids for
which the viscous stress tensor S depends linearly on the symmetric part of the
velocity gradient D, (u). In accordance with the general principles delineated
above, the only admissible form of S reads

S = 2u D, (u) + Atrace[D;(u)] L, (1.16)

where p and A are called wiscosity coefficients (see Section 1.3 of Chapter 1
in [22]).

From the physical point of view, it is more natural to use the representa-
tion (1.15), which can be written as

§ = 2(Da(u) - %divzu 1) +¢ diveul,

where p is the shear viscosity coefficient and { = A+ (2/N)u the bulk viscosity
coefficient. While p should be positive for any “genuinely” viscous fluid, { may
vanish, as is the case for a monoatomic gas.

The viscosity coefficients are quantitities that may depend on the values of
other state variables such as ¢ and 9. Experiments show that the viscosity of
fluids is quite sensitive to changes in temperature 1. From this point of view,



