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Preface

A standard object of interest in the global qualitative theory of dynamical
systems is the space of smooth dynamical systems with the C'-topology. In
recent years many deep and important results were obtained in the theory of
structural stability. These results are mostly based on the following fundamental
fact : we may consider a C'-small perturbation of a smooth dynamical system
as a perturbation in a neighborhood of any trajectory which does not change
essentially the corresponding “first approximation” linear system. It is known for
a long time (beginning with works of A.Lyapunov and H.Poincaré) that under
some intrinsic conditions on the “first approximation” system perturbations of
this sort do not change the local structure of a neighborhood of a trajectory.

The situation becomes quite different if we study C®-small perturbations
of a system. It is easy to understand that arbitrarily C°-small perturbation
can result in a complete change of the qualitative behaviour of trajectories
in a neighborhood of a fixed trajectory. Nevertheless the theory of C°-small
perturbations of dynamical systems which was developed intensively over the
last 20 years contains now many interesting results.

It was an intention of the author to give the reader an initial perspective of
the theory. So we are going to give in this book an introduction to some of the
main methods of the theory and to formulate its principal results.

Of course, this book is a reflection of scientific interests of the author, hence
we pay more attention to problems which are close to the author’s own works.
This book is an introduction rather than a monograph. That’s why the author
tried to simplify and to “visualize” some proofs. Due to this reason some tech-
nically complicated proofs (mostly connected with applications of the theory
of systems with hyperbolic structure) are omitted, and the reader is referred
to the original papers. Sometimes we give only an “explanation” of the main
ideas instead of a complete proof (as for example in the case of the C%-density
Theorem of M.Shub).

The book consists of 5 chapters and 3 Appendices. Chapter 0 contains prac-
tically no theorems. It gives an introduction to the language of the theory and
surveys some results we need later. In section 0.1 we define spaces of dynam-
ical systems : the space Z(M) of continuous discrete dynamical systems on a
smooth closed manifold M — the main object in this book, and some other spaces
we work with. We devote section 0.2 to the space M™* - the space of compact
subsets of M with different topologies. We describe also some properties of semi-
continuous set-valued maps in this section. In section 0.3 we prove two variants
of the C%closing Lemma. In section 0.4 we give a survey of basic results of the
theory of smooth dynamical systems with hyperbolic structure. We describe the
set of diffeomorphisms which satisfy the STC (the strong transversality condi-
tion). It is known now that this set coincides with the set of structurally stable
systems. We try to explain in this book that diffeomorphisms which satisfy the
STC play the crucial role not only in the theory of structural stability but also
in the theory of C%small perturbations of dynamical systems.



Chapter 1 is devoted to generic properties of systems in Z(M). We study
tolerance stability in section 1.1. A counterexample constructed by W.White
to the Tolerance Stability Conjecture is described. We prove some results of
F.Takens connected with this conjecture. Pseudoorbits are considered in section
1.2. We define the POTP (the pseudo orbit tracing property) and some of
its generalizations. The genericity of weak shadowing for systems in Z(M) is
established. We give also a proof by F.Takens of a variant of the Tolerance
Stability Conjecture (with extended orbits instead of orbits).

Various types of prolongations are studied in section 1.3. We describe results
of V.Dobrynsky and A.Sharkovsky which show that a generic system in Z (M)
has the following property : the set of points such that their positive trajectories
are stable with respect to permanent perturbations is residual in M. It is shown
also that a generic system in Z(M) has the property : for any point of M its
prolongation with respect to the initial point, its prolongation with respect to
the system, and its chain prolongation coincide.

We study various sets of returning points : the nonwandering set, the set
of weakly nonwandering points, the chain-recurrent set in section 1.4. In this
section we discuss also filtrations. We prove a theorem of M.Shub and S.Smale :
if a system has a fine sequence of filtrations then it has no C° f2-explosions.

Chapter 2 is devoted to topological stability. We describe general properties
of topologically stable systems in section 2.1. It is shown that if a dynam-
ical system ¢ is topologically stable then ¢ is tolerance-Z(M)-stable and ¢
has the POTP. We prove also the following result obtained by P.Walters and
A.Morimoto : if a system ¢ is expansive and has the POTP then ¢ is topologi-
cally stable.

Results of Z.Nitecki on topological stability of diffeomorphisms with hy-
perbolic structure are described in section 2.2. We show that a hyperbolic set
is locally topologically stable. After that we apply Smale’s techniques for con-
structing filtrations to prove that if a diffecomorphism ¢ satisfies the Axiom
A and the no-cycle condition then ¢ is topologically f2-stable. We formulate
( without a proof) the main result of Z.Nitecki : if a diffeomorphism ¢ satisfies
the STC then ¢ is topologically stable.

K.Yano characterized topologically stable dynamical systems on the circle.
The main statement of section 2.3 is the following theorem of K.Yano : a sys-
tem ¢ on S! is topologically stable if and only if ¢ is topologically conjugate
to a Morse-Smale diffeomorphism. We describe in this section an example con-
structed by K.Yano of a dynamical system which has the POTP but is not
topologically stable.

Section 2.4 is devoted to the C%-density theorem of M.Shub : any diffeomor-
phism ¢ can be isotoped to a diffeomorphism satisfying the STC by an isotopy
which is arbitrarily small in the C°-topology. We do not give a complete proof
of this result but describe its main ideas in the most “visible” case dimM = 2.
In section 2.5 we formulate (without proofs) two results : a theorem of M.Hurley
who described the chain-recurrent set of a topologically stable diffeomorphism



and a theorem of J.Lewowich who applied Lyapunov type functions in the the-
ory of topological stability.

We study CC-small perturbations of attractors in Chapter 3. Basic proper-
ties of attractors are described in section 3.1. Section 3.2 is devoted to stability of
attractors under C%small perturbations of the system with respect to different
metrics on M*. It is shown that a generic system ¢ in Z(M) has the property :
any attractor of ¢ is stable with respect to Ry. This result is a generalization
of a theorem of M.Hurley which considers stability of attractors with respect to
the Hausdorff metric R. We prove also the following result of the author : if an
attractor is stable with respect to Ry then its boundary is Lyapunov stable.

Lyapunov stable sets and quasi-attractors in generic systems are considered
in section 3.3. We prove a theorem of M.Hurley : if dimM < 3 then the union
of basins of chain-transitive quasi-attractors of a generic dynamical system is
a residual subset of M. The second main result of this section was obtained
by the author : for a generic dynamical system any Lyapunov stable set is a
quasi-attractor.

In section 3.4 we study stability of attractors with the STC on the boundary.
The main theorem of this section was proved by O.Ivanov and the author : if I
is an attractor of a diffeomorphism ¢ which satisfies the STC on the boundary
of I then I is Lipschitz stable with respect to the Hausdorff metric R. Section
3.5 is devoted to stability of attractors for Morse-Smale diffeomorphisms. We
describe results of V.Pogonysheva. It is shown that an attractor I of a Morse-
Smale diffeomorphism is stable with respect to metric R, on M* if and only if
I =1Intl.

In Chapter 4 we study limit sets of domains and describe some results
obtained by the author and V.Pogonysheva. Section 4.1 is devoted to Lyapunov
stability of limit sets. It is shown, for example, that a generic system in Z(M)
has the following property : given £ € M there exists a countable set B(z) such
that for any r € (0,+00) \ B(z) the w-limit set of the ball of radius r centered
at z is Lyapunov stable. We investigate also the process of “iterating of taking
limit sets of neighborhoods”. It is shown that for a generic system this process
“approximately stops” after the first step.

Section 4.2 is devoted to limit sets for diffeomorphisms which satisfy the
STC. It is shown that if a diffeomorphism ¢ satisfies the STC then given r € M
there is a finite set C(z) such that for any r € (0,+00) \ C(z) the w-limit
set of the ball of radius r centered at z is an attractor. We prove a result of
V.Pogonysheva which gives sufficient conditions for the stability of the w-limit
set of a domain G with respect to both the set G and to the system.

Appendices A,B of the book are devoted to two important technical results
we use in previous chapters. Appendix A contains a proof of the following
statement : for a diffeomorphism ¢ which satisfies the STC there is a constant
L such that any 4-trajectory of ¢ with small § is Lé-traced by a real trajectory.
In Appendix B we investigate attractors with the STC on the boundary. The
structure of the boundary of the attractor in this case is described ; it is shown,
for example, that the boundary is an attractor itself.
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In Appendix C we study families of pseudotrajectories generated by numer-
ical methods. We prove a theorem obtained by R.Corless and the author. It
shows that for any diffeomorphism ¢ satisfying the STC there exist numerical
methods of arbitrary accuracy such that ¢ has trajectories which are not weakly
traced by approximate trajectories obtained using these methods.

We usually do not give in this book any special references to statements
included in basic university courses of mathematics. The list of references is far
from being complete. It contains only those books and research papers which
are directly mentioned in the text.

Many conversations with colleagues were very important for the author
during the preparation of this book. Special thanks are to D.Anosov, V.Arnold,
R.Corless, Yu.Il’yashenko, O.Ivanov, V.Pliss, V.Pogonysheva, R.Russell, G.Sell,
T.Eirola and to Zhang Zhi-fen.
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0. Definitions and Preliminary Results

0.1 Spaces of Dynamical Systems

In this book we study dynamical systems on closed smooth manifolds. Some
results we prove have analogues for continuous dynamical systems on metric
compact sets but we don’t pay attention to possible generalizations of this kind.

This section is mostly devoted to fix the language and basic notation. Pre-
requisites for reading this book are basic courses on Dynamical Systems (see
[Pad, Pi8] for example) and on Differentiable Manifolds ([Hil, Mu2] for exam-
ple).

Throughout the book M is a C*®-smooth closed (that is compact and with-
out boundary) manifold of dimension n. We fix a Riemannian metric d on M.
We denote by T, M the tangent space of M at £ € M, and by TM the tangent
bundle of M. For v € T, M we denote by |v| the norm generated on T, M by d.
With fixed Riemannian metric d for £ € M we can define the exponential map
exp, being a diffeomorphism of class C* of a neighborhood of 0 at T, M onto
a neighborhood of = in M. As M is compact there is r > 0 such that for any
r € M the map exp, is a diffeomorphism of {v € T, M : |v| < r} onto its image.

We study discrete dynamical systems generated by homeomorphisms ¢ :
M — M. We do not distinguish between a homeomorphism ¢ and the dynamical
system it generates.

Let us denote by

O(z,¢) = {¢*(2) : k € 2)

the trajectory (orbit) of a point £ € M in a dynamical system ¢. Sometimes we
write O(¢) (if it is not important to mark the initial point) or O(z) (if we work
with a fixed dynamical system) instead of O(z, ¢).
We denote
0*(z,¢) = {¢"(2) : k € Z,k > 0},

O~ (z,¢) = {¢*(z) : k € Z,k < 0}.

We also use the following notation. If z € M, ky, ko € Z,k; < ko we write
OF(z,6) = {¢*(z) : k1 < k < ko).

In this case k; = —oo or k9 = +00 are admissible, so that

Ok, (z,4) = {*(z) : 00 < k < k),
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and O~ (z,¢) = 0% (z, ¢), for example. We also sometimes write Ot (), O* ()
instead of Ot (z, ). We use the same notation for trajectories of sets: if X C M
then we write

O(X,9) = {¢"(X) : k € Z},

and so on.
As usually we say that a point £ € M is a periodic point of period m for a
dynamical system ¢ if

¢™(z) = z;¢%(x) #zxfor0<k<m—1

(if ¢(x) = = we say that z is a fixed point). We denote by Per(¢4) the set of
periodic points of ¢, and by Fix(¢) the set of fixed points of ¢.

We say that a point z € M is a nonwandering point of ¢ if given a neigh-
borhood U of z and a number mg > 0 we can find a number m € Z,|m| > my
such that

d™(U)NU # 0.

Denote by £2(¢) the set of nonwandering points of ¢.
For a point £ € M and for a dynamical system ¢ we define a,, the a-limit
set of O(z, ¢), and w,, the w-limit set of O(z, @), as follows:

(0) = (Jim, (@) - im s ~oo),

wo(9) = {kllglo ¢'* () : Jim £, — +00}.

Sometimes we write a,,w, instead of a,(¢),w,(¢). The following statement
is standard (see [Pi8], for example).

Lemma 0.1.1.
(a) the set 2(¢) is compact and ¢-invariant;
(b) z € 2(¢) if and only if there exist sequences

Ty = T, bt = 400 as k = oo

such that
¢ (z) = = as k = oo;

(c) for any x € M we have a,(¢) Uw,(¢) C 2(¢).
Take two discrete dynamical systems ¢, on M and let

po(¢, ) = max(d(d(z), ¥(2)),d(¢™" (z), ¥ (x)))-

It is easy to see that py is a metric on the space of dynamical systems.
The main object in this book is the space Z(M) of continuous discrete dynam-
ical systems on M with the C°topology induced by the metric py. Standard
considerations show that (Z(M), p) is a complete metric space.
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For a set A C M, for a dynamical system ¢ € Z(M), and for a number

€ > 0 we denote
N(A)y={z e M :d(z,A) < ¢}

(here as usually d(z, A) = inf,c4 d(z,y) ),
N(¢) = {¢ € Z(M) : po(9, %) < €}.

We consider not only continuous but also differentiable dynamical systems
on M generated by diffeomorphisms of M. To introduce the C"-topology on the
space of diffeomorphisms of class C",1 < r < 400, we can proceed as follows.

Consider a smooth map f : M —+ N, where M, N are smooth manifolds.

The map f is said to be an immersion if the derivative

Df(p) : ToM - Ty N

is injective for all p € M.

The map f is said to be an embedding if f is an injective immersion which
has a continuous inverse f~! : f(M) C N = M.

The classical Whitney’s Theorem [Hil] states that if dimM = n then there
exists an embedding

f: M = R™ (0.1)

Fix a finite covering of M by open sets V;, ..., V,, such that each V; is contained
in the domain of a local chart (¢;,U;) of M.

Consider a smooth map x : R* = RY, let z = (z,,...,z,) be coordinates

of R™. As usually we denote for p = (p;,...,p,) with p; € Z,p; > 0

Px oPx
527 = Bz oa Pl =Pt P

Take two diffeomorphisms ¢, of M. Take ¢ € {1,...,m} , suppose that
Vi C Uj, and let i

$i=fopo& ,di=fopog;!

(here f is the embedding (0.1)). If ¢, ¢ are diffeomorphisms of class C",1 < r <
+00, we can introduce the number

0% (i — %)

ozP

s @I

N S
(as everywhere in this book for a linear operator A we consider the operator
norm

|All = sup |Ay].)
lyl=1

It is easy to see that p, is a metric on the space of diffeomorphisms of class
C" of M. This metric induces the C"-topology (as M is compact the topology
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is independent on the choice of Vj,...,V,,). We denote by Diff"(M) the cor-
responding topological space. It is evident that for any r > 1 the topology of
Diff" (M) is not coarser than the topology on the space of C"-diffeomorphisms
induced by the topology of Z(M).

We denote by CLD(M) the closure of Diff! (M) in Z(M). We shall use below
the following important statement obtained independently by J.Munkres [Mul]
and by J.Whitehead [Wh].

Theorem 0.1.1. Ifdim M < 3 then Z(M) =CLD(M).

Note that it is shown in [Mul] that if dimM > 3 then there exist homeo-
morphisms which are not C%approximated by diffeomorphisms.

We do not discuss in this book analogues for flows of the results we describe.
Nevertheless sometimes we work with flows - for example we apply techniques of
flows to prove variants of the C%closing Lemma (Lemmas 0.3.1,0.3.3). Besides,
it is very convenient to visualize some constructions using flows (see Sect. 0.1).

So we describe main notation we use below. We consider vector fields X
which are Lipschitz on M in the following standard sense. Denote by 7 the
projection TM — M, that is for (z,v) € TM with v € T, M we have 7(z,v) =
z. As usually we define a vector field X on M as a map X : M — TM such
that mo X () = z for any x. That means that we can write X (p) = (p, X,). Let
d be a metric on TM generated by d. We say that X is Lipschitz on M if there
is a constant L > 0 such that for any p;,p; € M we have

d(X(p1), X (p2)) < Ld(py,p2)-

It is easy to show that if a vector field X on M is of class C! then X is Lipschitz
on M.
It is well-known that if a vector field X is Lipschitz then the corresponding
system of differential equations
dr
— =X
= (z)
generates a flow & : R x M - M with ¢(0,z) = .
For two flows &,, $, we let

p0(¢l) ¢2) = pGlelléa[)El.I] d(¢l (tvp), ¢2(t7p))

It is easy to see that py is a metric on the space of flows. Below we say that the
topology induced by py on the space of flows is the standard C-topology.

0.2 The Space M*

We denote everywhere in this book by X* the set of compact subsets of a
topological space X. In this section we mostly pay attention to M~ - the set of
compact subsets of our manifold M.
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We begin with description of the standard Hausdorff metric R on M*. Take
A,B € M* and let
r(A,B) = meaj(d(x, B).

Take A,B € M* and if A,B # 0 let
R(A, B) = max(r(A, B),r(B, A)).
Let forany A€ M*, A# 0

R(#, A) = diamM = max d(z,y),
z,yeM

and let
R(D,0) = 0.

It is easy to show that R is a metric on M*. It is evident that for any A we
have R(A, A) = 0 and that R(A, B) = 0 implies A = B. To prove the triangle
inequality take A, B,C € M*. Consider £ € A,y € B, then

d(z,C) < d(z,y) + d(y,C) < d(z,y) + R(B, C),

hence
d(z,C) < Hglla]d(l‘,y) + R(B,C) = d(z,B) + R(B,C),
v
and
d(z,C) < R(A,B) + R(B,C).
Therefore,

r(A,C) < R(A, B) + R(B, C).

The same reasons show that
r(C, A) < R(A, B) + R(B,C),

so we obtain that
R(A,C) < R(A,B) + R(B,C).

It follows that R is a metric in M*. It is shown in [K] that (M*, R) is a complete
metric space. Later if we write M* we have in mind the space (M*, R).

We work in this book also with the following metrics Ry, R;, R on M*
(we use for Ry the original notation from the paper [Pi3] in which this metric
was introduced; R, was introduced in [Pol] and was denoted R; there). Take
A,B € M* and let

Ry(A, B) = max(R(A, B),R(M \ A,M \ B)),

Ry(A, B) = max(R(A, B), R(IntA, IntB)),
Ry(A, B) = max(Ry(A, B), Ri(A, B)).

It is evident that for S = Ry, R, R, we have S(A,B) > 0,S(A,A) = 0, and
that S(A, B) = 0 implies A = B.
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m

MN~A L

7 =
i_;

If pr,p2 : M* x M* — R satisfy the triangle inequality and p(A,B) =
max(p1(A, B), p2(A, B)) then p also satisfies the triangle inequality. Indeed,
take A, B,C € M*. If p(A,C) = p1(A,C) then

p(A,C) < pi(A,B) + p1(B,C) <

max(pl(A»B)7p2(A’B)) +ma'x(pl(B1 C)ap'Z(B’C)) = p(AvB) + p(B’ C)

If p(A, C) = pa(A, C) the reasons are the same. Hence, R, Ry, R, R, are metrics
on M*.

Let us show that R, Ry, R;, Ry induce different topologies on M*. To show
this, consider M = S? and take a coordinate neighborhood being homeomorphic
to R? with coordinates (z, y).

Let A= {(z,y) : 2+ 4y?> <1} and for m > 1

A= AN{(z,0) :Jo] > Y
(see Fig. 0.1). It is evident that
lim R(A, An) = 0, Ro(A, An) = 1,

lim Ry(A, An) =0.

Now let

A={(z,y) : 2+’ <1} U{(z,y) : 1 <2 <2,y =0},
and form > 1
r—2 2—zx

<y<
m-y_m

An=AJ{(z,9):0<z <2, }
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(see Fig. 0.2). It is evident that
"!l_I'IgoR(A,Am) =0, Jl_lgo RO(A’ Am) =0,

Rl(A, Am) =1.

Now we describe a general process of constructing metrics on M*. We are
going to show that the metrics R, Ry, Ry, Ry form the complete list of metrics
given by this process.

Let foraset AC M

Fi(A) = M\ A, F,(A) = A.
Consider the following set of finite sequences
J={(1,-..,im) : i € {1,2}},

and let

for j = {i1,...,im} € J let
Fi(A)=F,o0F,o0...0F, (A).

Now take a finite subset J of J which has the properties:
(a) for any j € J,A € M* we have Fi(A) € M*;
(b) there exists j € J such that R(F7(.), Fi(.)) is a metric on M*.
Define for A, B € M*

Rj(A, B) = max(R(F’(A), F/(B))). (0.2)

ijeJ

It follows from our previous considerations that any Rj is a metric on M*.
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It is well-known (see [K]) that if we take A € M* then for any j =
(i1,...,1m) € J the set F¥(A) coincides with one of the following sets:

A, IntA IntA, M\ A,M \ A, Int(M \ A) (0.3)
Only 3 sets in (0.3) are compact : A, M \ A, IntA. As

M\ A = F,0 Fy(A),

IntA = M\ (M \ A) = F;0 Fj o Fy0 Fi(A),

the metrics R, Ry, Ry, Ry are obtained in the form (0.2) with J = {0},J =
{0,2,1)},J ={9,(2,1,2,1,)},J = {0,(2,1),(2,1,2,1,)}, respectively.

Evidently there exist different compact sets A, B such that M \ A= M \ B
and IntA = IntB, hence

R(M\ A, M\ B), R(TntA, IntB),

max(R(M \ A,M \ B), R(IntA, IntB))

are not metrics on M*. This proves that { R, Ry, R1, R} is the complete list of
metrics obtained by the described process.

We shall consider also M** — the set of all compact subsets of M* (we remind
that here M* means (M*, R)). We denote by R the Hausdorff metric on M**.

Let now X be a topological space. A subset A C X is called residual if A
contains a countable intersection of open dense sets in X. If P is a property
of elements of X we say that this property is generic if the set {z € X :
z satisfies P} is residual in X. Sometimes in this case we say that a generic
element of X satisfies P.

The topological space X is called a Baire space if every residual set is dense
in it. A classical theorem of Baire [K] says that every complete metric space is a
Baire space. Hence, Z(M) is a Baire space, and CLD(M) is also a Baire space.

Now we are going to prove a result which is very useful to establish gener-
icity of some properties of dynamical systems in Z(M). Let us begin with the
following definition.

Let X be a topological space, and let (IV, p) be a compact metric space. A
map

Y: X > N*

is called upper semi-continuous (respectively, lower semi-continuous) if for every
z € X and § > 0 there is a neighborhood W (z) of z in X such that for any
y € W(z) we have

¥(y) C Ns(v(x))

(respectively,

¥(z) C Ns(¥(y)) ).
As previously, Ns(¢(z)) is the §-neighborhood of ¥(z).



0.2 The Space M* 9

Let R be the Hausdorff metric on N*. Fix § > 0. We say that the map ¢
is 8-continuous at z € X if z has a neighborhood W(z) in X such that for any
z', 2" € W(z) we have

R(¥(), ¥(2")) < 6.

Clearly v is continuous at z € X if it is §-continuous at z for any § > 0.

Let Vs be the set of points of §- continuity of .

Lemma 0.2.1 [Tal]. If¢: X = N* is upper semi-continuous or lower semi-
continuous then for any § > 0 the set Vs is open and dense in X.

Proof. . We consider the case of 1 being upper semi-continuous, the case of 9
being lower semi-continuous is treated analogously. It follows immediately from
the definition that the set Vj is open. Let us show that this set is dense.

Fix an open covering Uy, ...,Ux of N such that diam U; < 4,7 = 1,...,k.
Let K = {1,...,k} (we consider K as a discrete topological space), and let
K* be the set of subsets of K (we are following our notation here taking into
account that any subset of K is compact).

Take L € K* and consider the subset N, of N*: A € N* is in N if and
only if

(a) ANU; # 0 for any ¢ € L;

(b) A C Ujer Us.

It is evident that for any L, N is open in N*.

Now fix an open subset W of X. Define

Bw = {L € K* : there is z € W with ¥(z) € N.}.

As K* is finite and has a partial order (by the inclusion relation for subsets
of K) we can find a minimal element Ly € By . This means that there is no
L € By with L C Lo, L # L.

Let z9 € W be such that ¥(z¢) € Ni,. We claim that 1 is é-continuous at
zo. Indeed, as v is upper semi-continuous we can find a neighborhood W (z,)
such that for any z’ € W (z,) we have

11)(.1") C U U,‘.
i€Lo

As L is minimal we see that for any z’ € W(zo)

’l/)(:l:’) NU; #0,i € L.

Take z’, 2" € W(z) and consider ¢ € 1(z’). There is ¢ € Lo such that 3 € U;.
Find 3’ € ¥(z") such that y” € U;. It follows from diam U; < § that p(y/,y") <
4. This evidently implies

R(y(z'),¥(z")) < 8.

So, Vs is dense. This completes the proof.

Corollary 0.1 If ¢ : X — N* is upper semi-continuous or lower semi-
continuous then the set of continuity points of ¥ is residual in X.



