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PREFACE

This is an introductory text in linear algebra for students who have had
experience with beginning college mathematics and have some aequaintance
with proof, including a little mathematical induction. No previous experi-
ence with linear algebra or matrices is assumed, but it would be helpful if the
student had some familiarity with the ideas of a field and a group. However,
for those without such information, appendixes are provided which review,
with some proofs, the salient ideas needed. The teacher who wishes to confine
attention to the fields of real and complex numbers can do so by exercising a
little care. However, I feel that the student should gradually progress toward
thinking in terms of a general field, if only from the point of view that the field
postulates really are a formulation of the rules of manipulation.

In the process of developing the important definitions and results of
linear algebra, I have tried to demonstrate to the student what more abstract
mathematics is like. Thus motivation is of fundamental importance. A set
of postulates should arise from experience. The student should be told where
we are going and why. Interrelationships should be stressed. Terminology
should be introduced only when it is about to be used. It is important that
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vi PREFACE

the student know the pedigree of a concept so that he may become a partner
in the development.

The exercises are, of course, a very important part of the book. A stu-
dent can test his knowledge first by working through the routine numerical
ones. He is then given the opportunity of proving some of the theorems and
extending the theory so that he may experience the joy of being a mathema-
tician and have an important part in the development of the subject. On
occasion, exercises lead into material which is to follow. However, important
results whose proofs are left as exercises are stated in the body of the text
for continuity and easy reference.

The first three chapters constitute the basic material on vector spaces,
matrices, and linear transformations. We begin with a short preview of where
we are going and why. Then we trace the evolution of the idea of a vector
from that of a physical “arrow’ to an n-tuple of numbers. We next codify
the properties of an n-tuple and, on the basis of this experience, set up an
abstract definition of a vector space; at the same time showing the advantages
of this point of view. The abstract definition is basis free. In fact, poly-
nomials in a single variable are shown to constitute an infinite-dimensional
vector space. However, though the abstract definition is extensively used,
almost all the spaces dealt with in this book are finite dimensional.

The second chapter introduces matrices through their use in connection
with sets of linear equations. The development of the echelon form is shown
to be a natural abbreviation of the usual method of solution by elimination.
Cues for the definitions of the operations on matrices are provided by our
experience with vectors and by applications we should like to make.

The first nine sections of Chapter 3 deal with linear transformations with-
out the use of matrices or determinants; this is to stress their inherent prop-
erties without being matrix bound. However, we reach a point, in Section
3.10, where matrices are needed to give us information about transformations.
(Certainly it would be difficult to define the trace of a transformation without
a matrix.) Then, too, from this point on, the interplay between matrices and
linear transformations adds enrichment to both developments. Very funda-
mental, too, is the idea of certain invariants of a matrix or transformation
under change of basis. In this connection, I have found that one gains con-
ceptually by postponing the use of determinants. So without determinants
it is shown that the minimum polynomial of a transformation of a vector space
into itself has degree not greater than the dimension of the space. The proof
is a constructive one and paves the way for the general theorems on the
Jordan normal form in Chapter 6.

In the fourth chapter, determinants are developed to introduce the char-
acteristic equation, prove the Cayley-Hamilton theorem, and give a more
efficient means of calculating characteristic roots. No previous knowledge of
determinants is assumed. Indeed the approach is essentially that of Weier-
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strass; that is, we decide what we want a determinant to do and how we wish
it to behave, and then we define it so that it does and behaves as we want.
This not only has the advantage of motivation, but also results in some
economy of development.

The fifth chapter opens with the idea of a dot product of vectors and,
after some development of its properties, leads into the more abstract concept
of a vector product function. Here progress is from the general bilinear form,
through the idea of a nonsingular form, to the inner product space and quad-
ratic forms. Connections with and applications to Euclidean transformations
are stressed to the point where it is shown that any Euclidean transformation
can be represented as a product of symmetries. Dual spaces are not intro-
duced as such, though they are inherent in the development of the adjoint
transformation. It seemed that without the prospect of dealing more system-
atically with duals, there was not much point in introducing them explicitly.

In the sixth chapter, the Jordan form is developed. It begins with a
review of some results already obtained and, for motivation purposes, a prob-
lem in stochastic matrices of order 2. Then, after the general form is devel-
oped, applications are given to a method of computing the characteristic
polynomial, to differential equations for those with some experience in that
subject, and to positive stochastic matrices.

The first three appendixes constitute material on groups, fields, and poly-
nomials which is used in the book but which some students may not already
know. Also, in the case of permutation groups, relegation to an appendix
avoids breaking the continuity of the development of determinants. The
fourth appendix is a curious and interesting result from Artin’s Geometric
Algebra.

From time to time throughout the book some ideas of projective geom-
etry are introduced not only for historical reasons but because the applications
are especially close. However, no prior knowledge of projective geometry is
assumed.

For students without previous experience with linear algebra, the first
three chapters should provide enough for a semester’s course, meeting three
times a week. Not much of this material could be omitted except perhaps for
affine transformations and projective geometry. On the other hand, for stu-
dents with some previous knowledge of the subject, one should be able to
cover much of the material in Chapter 5 in a semester’s course, by going
lightly over some of the chapter on determinants.

The level of sophistication rises throughout the book as the student
acquires experience. In a number of cases a difficult proof is approached by
a preview of the method, and afterward it is illustrated by a numerical exam-
ple. In particular, special cases of the Jordan normal form are proved in
previous chapters by essentially the same method as that used for the general
case in Chapter 6.
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VECTOR SPACES

1.1 INTRODUCTION

What is linear algebra? Often in mathematics we begin with a simple idea,
work it and knead it and stretch it until the final product has very little
resemblance to what we started with. The only clue which remains is, per-
haps, a word in the name. This process, of course, happens outside mathe-
matics as well. Who would think that a beautiful glass objet d’art was made
mostly of sand.

The word linear should have something to do with a line, and indeed
it has in the beginning. We know that in analytic geometry the equation of a
line has the formax + by + ¢ = 0. So we call ax + by + ¢ a linear expression.
A property of this expression is that x and y each occur to the first degree.
Taking our cue from this, we say that ax + by is linear in x and y and that
ax + by + ¢ = 0 is a linear equation. On the other hand, we do not call the
expression 2z -+ zy linear in z and y since the degree of zyis 1 + 1 =2 in z
and y, though it is linear in z alone.

The next step in our generalization is to remove the restriction to two

1



2 VECTOR SPACES

variables. We also call ar + by + c# a linear expression, where a, b, ¢ are
thought of as numbers and z, y, z as variables. We are no longer concerned
with a line, for the equation

ax +by+ce+d=20

is satisfied by points (z,y,2) on a plane. And with an expression of this kind
in four or more variables, we leave the realm of visual geometry completely
but still, as in an afterimage, think of

ar+by+cz+dt+e=0

for instance, as representing a ‘“‘surface’” in four dimensions which is in some
vague sense ‘‘flat.”” Again ax + by + cz + dt would be called a linear function
or linear expression in the variables z, y, z, and &.

In mathematics, as well as outside of it, it is often easier and certainly
more productive to define a concept not just by how it looks but by how it
behaves. In the description above we had to use words like degree and term
which are essentially dependent on what an expression looks like. If we
consider instead a function, with which you are also familiar, we can concen-
trate on the behavior. To be somewhat specific, let us think in terms of a
function of three variables: f(z,y,2). Now

flx,y,2) = ax + by + cz
looks linear. It has the property that
(ax + by +c2) + (a2’ + by’ + ') =alz +2') + by + ) +clz + 2)
In functional notation this shows up a little better. We have
Property 1 1If f(z,y,2) is a linear function, then
fleye) + 1@ ye) =flz+ 2,y +¢,2+72)

Notice one consequence. If we let x = 2/, y = ¢/, and z = 2/, we have

that is, 2f(e,y,2) = f(22,2y,22)

This is a special instance of a second property defined as follows:

Property 2 If f(z,y,2) is a linear function, then

flex,ey,c2) = cf(x,y,2)



sEcTIiON 1.1 3

for all numbers ¢. The operation involved is called multiplication by a scalar,
the scalar being the number c.

We have shown above that if ¢ = 2 this property follows from Prop-
erty 1. Indeed it can be seen that Property 1 implies Property 2 for any
positive integer c. But we could not use this method if ¢ were /2 or —3, for
instance. This shows, intuitively, that Property 1is not sufficient for linearity.
We can show, more rigorously, that Property 2 is not sufficient by the following
example, where Property 2 holds but Property 1 does not. Let

flzy2) = Vai + y? + 22

This satisfies Property 2. But the following shows that it does not satisfy
Property 1:

Vet F 2+ Vit i+ = Ve + 0 + U+ )+ &+ )

On the other hand, f(z,y,2) = ax + by + dz does have Property 2 by the
distributive property. Thus we formulate our definition of linearity of a
function.

Definition A function f(z,y,z) is said to be linear if it satisfies Properties 1
and 2.

This definition can be extended to any number of variables as follows:

Definition Let f(zy, z2, . . . , ) be a function of n variables. We call it
linear if it satisfies the following two properties:
L f(xlxxﬂy :xn)+f(y11y21- .. vyn)=f(x1+y1; [ ~:xn+yn)
2. flexy, cx2, . . ., Cxn) = ¢f (X1, T2, . . . , Tn)

It would be an oversimplification to say that linear algebra is the study of linear
functions. But it would be not far from the truth to say that linear algebra
is a study of mathematical systems which have the two properties above.

For those who prefer to think geometrically, we can also associate linear-
ity with flatness as mentioned earlier. A plane can be characterized by the
fact that if P and @ are any two points of the plane, then the line determined
by P and Q lies entirely in the plane. It is not hard to make the connection,
by means of analytic geometry, between this geometrical concept and linear
functions, but we do this more efficiently later (see Exercise 8 of Sec. 1.7).

Why does one study linear algebra? One reason is that linear functions
are simpler than functions which are quadratic or of higher degree. This
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means that linearity gives us a powerful tool for getting results, both within
and outside of mathematics. As we develop the theory we shall point out
some of its uses. (In fact, the uses which one makes of a theory often deter-
mine the direction in which it is to progress.) Also, the development has an
intrinsic interest of its own.

1.2 VECTORS

Of all the examples of mathematical systems which have the property of
linearity, vectors seem the most convenient to begin with since they are use-
ful in considering other linear systems. Let us begin by discussing them very
intuitively and recalling their properties. We think of a vector as a line seg-
ment with a point on one end or as an arrow without a tail. The length of
a vector might be a measure of the magnitude of a force, say, and its direction
shows the direction of the force. We could represent a vector in a plane by
two points, say (1,3) and (6,9), together with the line segment between them
and the designation of one as the initial point (the blunt end) and the other as
the terminal point (the sharp end).

Now the vector from (1,3) to (6,9) has the same magnitude and direction
as that from (0,0) to (6 — 1,9 — 3), that is, from (0,0} to (5,6) (see Fig. 1.1).
We call these two vectors equivalent. In general two vectors are defined to be
equivalent if they have the same length and direction. The idea of direction
is hard to pin down rigorously; and since we are operating on an intuitive level
at this point it is probably best to leave it undefined.

There are a number of operations that can be performed on a vector.
One is to change its length or magnitude; another is to change its direction;
a third is to “move it around,”’ that is, replace it by an-equivalent vector as
defined in the above paragraph. Consider now the operation of addition of
two vectors. Here we can take our cue from the physical situation and then

B (639)

B (516>

Figure 1.1
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Figure 1.2

see what this amounts to algebraically. To be more specific, suppose a stream
is flowing eastward at a rate of 3 miles per hour, and a person is rowing across
it at an angle of 60° with the bank and at a rate of 2 miles per hour. We can
ask the question: At what rate and in what direction is he approaching the
opposite shore? The theory of vectors in physics informs us that we can find
the answer by drawing a horizontal vector 3 units long to represent the direc-
tion and speed of the water and a vector of length 2 at an angle of 60° with it
to represent the direction and speed (velocity) of the rower (see Fig. 1.2).
Then if we “‘complete the parallelogram’” as shown, the length of the vector OC
gives the rower’s rate across the stream and its direction determines his direc-
tion. The vector OC is called the resultant or sum of the vectors OA and OB.
One can also find the resultant by completing a triangle as indicated in Fig. 1.3.

In this particular case, let us see what this vector addition amounts to
algebraically. Consider the first figure placed on coordinate axes so that point
A has the coordinates (3,0), and B is denoted by (1,2). Then it is not hard
to see that C has the coordinates (3 + 1,0 + 2) = (4,2). We merely add the
corresponding coordinates.

1.3 VECTORS AS n-TUPLES

We can preserve most of the intuitive properties of vectors and become much
more precise if we largely confine ourselves to vectors whose initial points are
at the origin of coordinates; any vector is equivalent to one of these. One
advantage of doing this is that we can then identify any such vector by the

Figure 1.3
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coordinates of its terminal point. In this sense we can then think of the
ordered pair (a,b) as being the vector whose initial point is the origin and
whose terminal point is that defined by the pair (a,b). In three dimensions,
we similarly call the ordered triple (a,b,c) a vector, thinking of the physical
vector that starts at the origin and has the point (a,b,c) as its terminal point.
What we lose by this point of view is the opportunity to consider vectors whose
initial points are not at the origin. We shall see that the gain much more than
counterbalances the loss. So we have the following definition:

Definition A vector is a sequence of n numbers (ay, @5, . . . , @), for n some
positive integer, that is, an ordered n-tuple of numbers. The a’s are called the
components of the vector. (Note that, for instance, (1,2,3) and (3,2,1) are
different vectors.)

We may think of these numbers as being rational, real, complex, or, in
fact, numbers of any field (see Appendix A). In this book we generally use
lowercase Greek letters to represent vectors, and lowercase Roman letters to
represent numbers. Thus we might write & = (a1, a3, . . . , @a).

1.4 OPERATIONS ON VECTORS

When adding vectors, we use the algebraic equivalent of the physical vector
sum illustrated in the previous section. Thus the resultant or sum of the two
vectors from the origin to the points (a1,a:) and (b1,bs) is the vector from the
origin to (a; + bi, a2 + bs), as may be seen geometrically. So we define the
sum of two vectors in the following way:

Vector Addition If « = (a1, a3, . . . , @x) and 8 = (by, b, . . ., bn), then
a+B=(a1+by,a+bsy ...,0a + b

Note that we can add two vectors only if the number of components of one is
the same as the number of components of the other; to add two vectors we add
corresponding components.

We can stretch or contract a vector, that is, change its length and/or
change its direction. Algebraically this amounts to multiplying each com-
ponent of the n-tuple by a number. So our next operation is

Multiplication by a Scalar If o = (a1, a2, . . . , @) and cis a number, then
ca = ac = {(cay, ¢, . . . , Cn)

The number ¢ is, in such a connection, often called a scalar. We usually
write it to the left of the vector, but sometimes (see Sec. 1.7) it is more con-
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venient to put it on the right. The two vectors are the same since the num-
ber ¢ is commutative with the a’s.

" Two vectors are equal if and only if they are the same. For instance,
(2,3) = (3,2), but (3,%) = (2,2). The vectors all of whose components are
zero, thatis, (0,0, . . . ,0), are called zero or null vectors. We use the symbol
6 to denote the null vector regardless of the number of components, with the
understanding that if we write, for example, a« + 8, then « and 6 have the
same number of components. From the definition of vector addition, we have

atb=0+a=a

The null vector is the additive identity.
The additive inverse of a is

—a=(—D(ay,a, ... ,a,) = (—a, —as, ..., —a,

sincea + (—a) = (—a) + a = 6.

It should be noted that there is again no conflict between multiplication
by a scalar and vector addition. For example, as we saw above, a + o = 2«
whether by vector addition or multiplication by a scalar. It is important to
notice that our definitions of addition of vectors and multiplication by a scalar
have been precisely in accord with the requirements of linearity imposed in the
first section of this chapter. That is, if in the two properties of linearity which
we stated in Sec. 1.1 we omit the symbol f, we have vector addition and multi-
plication by a scalar.

We have thus set up a kind of model for vectors. Just as the vectors
themselves are models for physical concepts like force and velocity, so our
n-tuples are models for vectors. We have preserved all the properties of
“physical” vectors in our mathematical model except equivalence. (This
could be recovered if needed.) What have we gained, besides preciseness
and a simple method for adding vectors? The answer to this question should
become clear in later sections.

EXERCISES

1. In each case below when the indicated sum exists, express it as a single
vector; when it does not exist, explain why.

(@) (1,2,3) + (3,4,5) (® 3(1,0,5) + 2(1,0)

(C) 3(1}075) + 2('%:'\/§>4) (d) 5(1:077) - '\/3(4;21'77)

(e) (1:0:—6!7) + 0(172:3) (f) 2(110)5:7) + (2;3:—1)7) + 0(5:6)7)
2. Find the vector a satisfying each of the following equations:

(a) a+ (3:4:75) = (7’1)_7) (b) 3o = (17273)

(&) a+ 2(3,1,0) = (2,0,3) (d) 5a + (7,—1,3) = Ta



