JimWelsh &
“John Elder

Infroduction
foPascal

C.A.R.HOARE SERIESEDITOR



INTRODUCTION TO
PASCAL

by
JIM WELSH

and

JOHN ELDER

Queen’s University of Belfast
Northern Ireland

Prentice/Hall (&

ENGLEWOOD CLIFFS, N.J. LONDON NEW DELHI SINGAPORE
SYDNEY TOKYO TORONTO WELLINGTON



Library of Congress Cataloging in Publication Data

WELSH, JIM 1943-
Introduction to Pascal.

Includes index.

1. PASCAL (Computer program language)

1. Elder, John, 1949 joint author.

I1. Title.

QA76.73.P35W44 001.6'424 78-27419
ISBN 0-13-491522-4

British Library Cataloguing in Publication Data

WELSH, JIM
Introduction to Pascal.
1. PASCAL (Computer program language)
I. Title I1. Elder, John.
001.6'424 QA76.73.P35
ISBN 0-13-491522-4

© 1979
by PRENTICE-HALL INTERNATIONAL INC., LONDON

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of Prentice-Hall International, Inc.
London.

ISBN 0-13-491522-4

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Dehli
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE., LTD., Singapore
PRENTICE-HALL, INC., Englewood Cliffs, New Jersey
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

Printed in the United States of America

10 9 8 7 6 5 4 3 2



INTRODUCTION TO PASCAL




Prentice-Hall International
Series in Computer Science

C.A.R. Hoare, Series Editor
Published
BACKHOUSE, R. C.,, Syntax of Programming Languages: Theory and Practice

DUNCAN, F., Microprocessor Programming and Software Development
WELSH, J., and ELDER, J., Introduction to PASCAL

Future Titles

HENDERSON, P., Functional Programming

JACKSON, M. A, System Design

JONES, C., Software Development

WELSH, J., and MCKEAG, M., Structured System Programming



Preface

The programming language PASCAL was developed in the late 1960s
by Professor Niklaus Wirth at the Eidgenossische Technische Hoch-
schule, Ziirich, Switzerland. His aim was to produce a language contain-
ing a small number of fundamental programming concepts that would be
suitable for teaching programmir.g as a logical and systematic discipline,
and also be capable of efficient implementation on most computers. His
success in achieving this goal can be measured by the rapid and
widespread increase in the use of PASCAL, both as a language for
teaching the principles of computer programming and as a practical
language for writing systems and applications programs.

This book provides a comprehensive introduction to PASCAL and is
suitable for use by novice programmers and by those with a knowledge
of other programming languages. The complete language is described
and the use of all the features of PASCAL is fully illustrated. The
language which we describe does not contain any features peculiar to
any particular implementation—indeed great care is taken to isolate and
stress the implementation-dependent features of PASCAL. More
general principles of programming are illustrated implicitly in the text. In
fact, the style of programming used is consistent with the current
methods of structured programming and stepwise refinement.

The material is based on various courses given at The Queen’s
University of Belfast over the past seven years by the authors, who
have wide experience in the teaching, use, and implementation of
PASCAL. The teaching sequence of the book is that used on those
courses and is suitable for a reader learning PASCAL, or indeed
learning to program, for the first time. The other aspects of computers
and computer organization of which a first-time programmer must be
aware are not covered in detail, but Chap. 1 presents a summary of the

xiii




Xiv PREFACE

knowledge and terminology on which subsequent chapters depend.
Chapters 3-6 introduce the basic data types and statements of PASCAL.
Chapter 7 deals with procedures and functions, the use of which we
consider fundamental in the program-construction process. In Chaps.
9-13 PASCAL’s data-structuring facilities—arrays, strings, records, sets,
files and pointers—are introduced.

The features of PASCAL are presented in turn, by

(a) defining the feature using the notation and terminology of the stan-
dard PASCAL definition;

(b) explaining its use, and any limitations and practical problems of
which the user must be aware;

(c) illustrating its use by small, tested, program fragments imbedded
within the explanatory text.

A distinguishing feature of the book is the inclusion, where ap-
propriate, in each chapter of one or more complete case-study programs.
In all the book contains seventeen such case studies illustrating the use
of various PASCAL facilities, and basic computing algorithms, in a
significant practical context. For each case study the design of the
program is developed by means of a step-wise refinement of the prob-
lem, and a final listing of the PASCAL program and the results it
produces is reproduced directly from its computer-printed output.

Most chapters end with a set of programming exercises which involve
further use of the language features described in the chapter. These
exercises require modifications or extensions to be made to earlier
case-study programs as well as the construction of new programs.

The book is intended for use in both learning and reference mode. To
facilitate its use in reference mode the book ends with an Appendix of
syntax diagrams, and a comprehensive index. The syntax diagrams
provide a concise summary of the language features in a form which is
easily used by someone familiar with the basic framework of the
language. The index lists all formal and informal terms used in the text
showing the defining occurrence of each, together with other occur-
rences which may help to clarify its significance.

At the time of writing, the universally accepted standard definition of
PASCAL is that given in Jensen and Wirth’s book Pascal User Manual
and Report, published by Springer-Verlag. Throughout this text the
terms ‘‘the definition of PASCAL"” and ‘‘the PASCAL Report’ are used
to refer to this standard.

Belfast, January 1979 Jim WELSH
JoHN ELDER



ACKNOWLEDGEMENTS

We wish to thank Professor Tony Hoare, who encouraged us to write
the book, and all those people who read drafts of the manuscript,
pointed out mistakes to us, and made constructive suggestions.



Contents

PREFACE, xiii
ACKNOWLEDGEMENTS, xv
CHAPTER ONE : COMPUTERS AND PROGRAMMING, 1

The computer, 1

Writing a computer program, 3
Running a computer program, 4
Language implementations, 5
Programming objectives, 6

® Correctness, 6

® (larity, 7

e Efficiency, 7

CHAPTER TWO : NOTATIONS AND FUNDAMENTAL
CONCEPTS, 9

Extended Backus—Naur form, 9
The vocabulary of PASCAL, 11
Numbers, 12

Identifiers, 14

Strings, 16

Comments, 16

Basic program structure, 17
Exercises, 18

vii



viii

CHAPTER THREE :

CHAPTER FOUR :

CHAPTER FIVE :

CHAPTER SIX :

CONTENTS

DATA TYPES AND DECLARATIONS, 20

® Data types, 20

The type integer, 21

The type real, 23

The type char, 26
- The type boolean, 27

Enumerated types, 29

Subrange types, 30
® Data declarations, 31
Constants and constant definitions, 31
Type definitions, 33
Variable declarations, 34
Uniqueness and order of identifier
definitions, 35
® Exercises, 36

STATEMENTS, EXPRESSIONS AND
ASSIGNMENTS, 38

Statements, 38

Expressions, 39

The assignment statement, 43
Exercises, 45

SIMPLE INPUT AND OUTPUT OF DATA, 46

® Transferring information to and from the
program, 46

Input in PASCAL, 47

Output in PASCAL, 51

Program 1 (calculating time of arrival), 54
Exercises, 56

BASIC CONTROL STRUCTURES, 58

e Compound statements, 58
® Repetitive statements, 60
® The while-statement, 60



CONTENTS

CHAPTER SEVEN :

CHAPTER EIGHT :

CHAPTER NINE :

ix

® The repeat-statement, 61
® The for-statement, 63
® Program 2 (tabulating examination marks),
66
® Conditional statements, 70
® [f-statements, 70
® Program 3 (analyzing a triangle), 72
® The case-statement, 73
e Program 4 (calculating tomorrow’s date), 76
® Exercises, 78

PROCEDURES AND FUNCTIONS, 80

® The procedure concept, 80
® Block structure and scope, 86
® Parameters, 92
® Variable parameters, 95
® Value parameters, 97
® Program 5 (alphabetic output of a sum
of money), 99
® Functions, 103
® Side effects of functions, 107
® Program 6 (finding prime numbers), 108
® Procedures and functions as parameters, 112
® Recursion, 115
® Mutual recursion, 119
® Program 7 (The Towers of Hanoi), 120
® Exercises, 123

THE GOTO-STATEMENT, 125

ARRAYS, 132

The array concept, 132

Two-dimensional arrays, 137

Whole array operations, 139

Program 8 (calculating notes and coins), 141
Packed arrays, 146

Strings, 147



X CONTENTS

® Program 9 (constructing a concordance),
149

® Other structured types, 156

® Exercises, 157

CHAPTER TEN : RECORDS, 159

The record concept, 159

With-statements, 162

Mixed structures, 164

Packed records, 166

Program 10 (updating a league table), 166
Variant records, 172

Program 11 (text formatting), 176
Exercises, 183

CHAPTER ELEVEN : SETS, 185

The set concept, 185

Manipulating sets, 187

® Construction, 187

® Membership testing, 188

® Set arithmetic, 190

Program 12 (computer-dating service), 191
Program 13 (coloring a map), 194
Exercises, 201

CHAPTER TWELVE : FILES, 203

The file concept, 203

Program 14 (updating a stock file), 211
Program 15 (sorting a file), 218

Text files, 225

Program 16 (a text editor), 230
Exercises, 238



CONTENTS

CHAPTER THIRTEEN :

APPENDIX 1 :

INDEX, 277

Xi
POINTERS, 240

The pointer concept, 240

Programming a stack, 245

Program 17 (cross-reference program), 247
Non-linear structures, 260

Storage tailoring, 264

Exercises, 266

SYNTAX DIAGRAMS, 268




1

Computers and Programming

Computer programming requires an understanding of the nature of
computers, of computer programs and of the programming languages in
which programs may be expressed. Subsequent chapters of this book
explain how computer programs may be written in the programming
language PASCAL. This first chapter summarizes the general concepts
of computers and their programming on which the subsequent chapters
depend.

For those readers who have already programmed computers in other
languages the chapter may provide a summary of the terminology, and
perhaps a hint of the programming philosophy, used in the following
chapters.

For those learning to program for the first time this chapter provides a
very brief summary of the facts and concepts which they must come to
appreciate while programming in PASCAL or any other language. A
course instructor may provide a more detailed treatment of these topics
before or during study of the material covered in the following chapters.

THE COMPUTER

A computer is a machine which can carry out long, complex and
repetitive sequences of operations at very high speed. These operations
are applied to information or data supplied by the user to produce
further information or results which the user requires. The sequence of
operations required to produce the desired results in any particular
computing task is specified as a computer program prepared for that
task.



2 COMPUTERS AND PROGRAMMING

The essential components of a computer are a processor, a memory,
and some input and output devices.

The processor is the work horse which carries out the sequence of
operations specified by the program. The individual operations provided
by the processor are very simple but are carried out at very high
speed—perhaps one million or more operations per second.

The memory is used to store the information to which the processor’s
operations are applied. Memory is of two kinds—primary or main store,
and secondary or backing store. The main store enables the processor to
fetch and to store units of information at a speed which is comparable to
its speed of operation, in fact each operation normally involves at least
one store access. To enable the processor to proceed from one operation
to the next without delay the sequence of program instructions which
specifies these operations is also held in the main store. The main store
thus holds both instructions and data, on which the processor operates.

The amount of main store available to the processor is limited, and is
used to hold only the programs and data on which the processor is
operating at that time. It is not used.for any permanent storage of data.
In some cases the main store may not even be large enough to hold all
the instructions or data involved in the execution of one program. For
these reasons computers are also equipped with secondary storage
devices such as magnetic tapes, disks or drums. The essential charac-
teristics of these devices are:

(a) their capacity is normally much greater than that of the main store;
(b) information can be held by them permanently, e.g. from one
program execution to another.

Backing
store

O— ——0
Input Main Output

devices : store : devices

Processor

Fig. 1.1 Organization of a computer.



WRITING A COMPUTER PROGRAM 3

However, the speed at which information can be transferred to and from
secondary storage is much lower than for main store.

Input and output devices are used to transfer information from the
outside world to the computer’s main store (input) and from the main
store to the outside world (output). Familiar input devices are card
readers, which read information punched on cards into the computer’s
store, and terminal keyboards which transfer the characters indicated by
key depressions into the computer store. Familiar output devices are line
printers and typewriters which print information on continuous paper,
and visual display screens which display textual or graphic information
on the screen of a cathode ray tube.

The logical organization of a computer may thus be depicted as in Fig.
1:1:

WRITING A COMPUTER PROGRAM

The use of a computer for a particular task involves three essential
steps:

(a) specifying the task the computer is to carry out, in terms of the
input data to be supplied and the output data or results to be
produced;

(b) devising an algorithm or sequence of steps, by which the computer
can produce the required output from the available input;

(c) expressing this algorithm as a computer program in a programming
language such as PASCAL.

Step (a), the specification, is not normally considered as part of the
programming process but a precise specification is an essential
prerequisite for a successful program.

It has been common practice in the past to separate steps (b) and (c),
first defining the algorithm in a notation convenient for its design, and
then translating or encoding this design into the chosen programming
language. However, the language PASCAL provides a notation which
may be used both for the design and for the final coding of the program
required. With PASCAL, therefore, steps (b) and (c) are not usually
separated, but merged as a continuous design/programming process.
This approach is well illustrated by the case-study programs considered
in the following chapters of this book.

In principle, once the computer program has been written, the pro-
grammer’s task is complete, since execution of this program by the
computer should produce the required results. In practice, because the
task to be carried out by the computer is complex, and the human



4 COMPUTERS AND PROGRAMMING

programmer’s ability is limited, the first program written may not
produce the required resuits. The programmer, therefore, engages in a
cycle of checking and correcting his program until he is satisfied that it
meets its specification completely. This process of detecting and correc-
ting errors in a program is known as debugging. Debugging is commonly
accomplished by running the program on the computer with suitable test
data.

RUNNING A COMPUTER PROGRAM

In a “high-level” language such as PASCAL the program is expressed
as a sequence of elementary steps which are convenient to the pro-
grammer. Likewise the program is prepared in a form which is con-
venient for the programmer to generate—as a piece of text written or
printed on paper, punched on a sequence of cards, or typed at a
computer-terminal keyboard.

However, the program which the computer’s processor executes must
be expressed as a sequence of the much simpler “low-level”” operations
available to the processor, and must be held in the computer store as a
sequence of encoded instructions each of which is immediately execut-
able by the processor. Preparation of a program in this form is an
extremely tedious and painstaking task for a human programmer.

Fortunately, however, the translation of a program text expressed in a
high-level language into an equivalent sequence of processor-executable
instructions within the computer store is itself a routine task which can
be carried out by a computer program. Such a program is provided for
each high-level language which may be used on a computer, and is
known as the compiler for that language.

Thus a program written in a high-level language in text form is first
input to the computer as data for an execution of the compiler program
for that language. The compiler produces an equivalent executable
program in the computer store, which may then be executed or run to
produce the desired effect. Figure 1.2 shows this two-stage process in
schematic form.

In translating a high-level language program the compiler may detect
many of the simple mistakes which the programmer has made in
expressing his program in that language. The compiler reports these
errors to the programmer by outputting a program listing, i.e., a printout
of the original program input together with messages identifying any
error detected during its compilation. Program errors detected in this
way are known as compile-time errors.

In running the executable program produced by the compiler, further



