

Principles of Operating
Systems

Sacha Krakowiak

translated by
David Beeson

The MIT Press
Cambridge, Massachusetts, London, England

© 1988 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

Original edition © 1987 by Bordas, Paris, published under the title Principes des systémes
d'exploitation des ordinateurs.

This book was typeset in Oxford by Cotswold Press Ltd. and printed and bound in the United
States of America.

Library of Congress Cataloging-in-Publication Data

Krakowiak, Sacha.
Principles of operating systems.

Translation of: Principes des systémes d'exploitation des ordinateurs.
Bibliography: p.
Includes index.
1. Operating systems (Computers) 1. Title.
QA76.76.063K7313 1988 005.43 87-5676
ISBN 0-262-11122-5

Principles of Operating
Systems

Preface

The operating system in a computer, or a computer installation, is a set of
programs carrying out two main functions:

» managing an installation's resources, ensuring, if necessary, that they are
shared between several users and controlling their distribution over the many
tasks submitted to an installation, and

« providing a series of services by presenting users with an interface that is
more adapted to their requirements than that of the physical machine; this
interface is that of a 'virtual machine' made up of a set of functions to manage
and communicate information and to implement the application software.

Recent developments in computer science have been marked by the
emergence of microcomputers and telematics services, alongside distributed
computer systems and individual workstations, and the integration of
computers both into complex industrial processes and into equipment for the
mass market. Although these developments have led to changes in the form and
function of computer systems, their design is still based on a set of principles
that have been gradually elaborated over the years, supported by theoretical
research and validated by their application to the construction of actual systems.

This book has two aims:

* to describe the main principles underlying computer operating systems:
management of parallelism and synchronization; naming, storage, and
protection of information; and resource allocation; and

» to illustrate the application of these principles to the actual design of
systems, taking account of recent developments in computer technology and its
fields of application.

To meet the latter objective, several sections (3.3, 5.3, 10.1, and 10.2) will
deal with specific examples, for which simplified systems based on existing
implementations have been drawn on. A faithful and complete description of a
real system would have overloaded this book with details that would not have
contributed to an understanding of the principles underlying system design.
Nonetheless it is hoped that the discussion of simplified examples will assist
in the detailed study of real systems by providing guidelines to their structure
and highlighting their essential aspects. It is strongly recommended that such a
study be carried out in order to supplement the lessons given in this book,
particularly by teachers who draw on it for course material. Bibliographic
references to guide a study of this kind are given at the end of chapter 1.

The field covered is essentially that of systems using a common memory, So-
called centralized systems, whose design principles are now fairly stable. A

X Preface

letter dated 21 May 1987 from M. Vitry, Foreign Rights, Bordas, states, "We
have just put in production the second French edition which contains minor
corrections and the additional chapter 11 ... It's due to be published early in
October 1987."

This book contains material corresponding to preparation for a master's degree
or the equivalent. It is principally directed at computer scientists who want to
improve their knowledge in the operating system field.

It shall be assumed that readers are familiar with

 the general principles of computer architecture and

« the principles underlying the design of algorithms and programs; a
programming language, including its practical use; and the general functions
and organization of a compiler.

It is always difficult to select a language in which to present algorithms when
discussing operating systems. As well as the difficulty of giving an overall
view of complex programs, there is that of dealing with problems of hardware.
Since this book is concerned with illustrating the methods used, rather than the
details of their implementation, a Pascal-based notation that is quite common
with any local extensions felt to be necessary has been chosen.

The end of each chapter gives an annotated list of bibliographic references and a
set of exercises. Some of these exercises represent a direct application of
concepts discussed; others require a certain amount of design work and could
form the basis for a project; others are intended to encourage students to
consider questions that have not been discussed and include references to guide
further study in these areas.

Acknowledgements

The general approach in this book was heavily influenced by the work
published by the Crocus! group: Systéemes d'exploitation des ordinateurs
(Computer Operating Systems), published by Dunod in 1975. The task is
easier now, as the essential concepts that at the time were still being
elaborated or were changing rapidly are now more stable. But without the
clarification and survey work carried out by that group, this book would never
have been written; my cordial recognition is therefore due to my colleagues in
the Crocus group.

Although in this case it was more indirect, another influence on this book
was that exerted by the work since 1976 of the Cornafion group. The
presentation given here of the questions of synchronization and object
management, in particular, owes a great deal to the Rennes sub-group:
Frangoise André, Daniel Herman, and Jean-Pierre Verjus.

This book emerged from courses taught since 1973 in various departments
of the Université Scientifique et Médicale and the Institut National
Polytechnique, both in Grenoble, France. Many people, both teachers and
students, have contributed over the years to the development of these courses.
The way in which concepts are presented here, as well as the preparation of
example applications and exercises, draws heavily on long-standing work in
collaboration with Jacques Briat, Joélle Coutaz, Guy Mazaré, Jacques Mossiére,
and Xavier Rousset de Pina. I naturally remain responsible for any errors there
may be (which I invite readers to point out to me, for correction in any
subsequent edition).

The original edition of this book was published with the support of the French
Ministry of Education, Industry and Research, as part of the programme to
assist the publication of scientific and technical books in French.

(') Crocus: a collective name for J. Bellino, C. Bétourné, J. Briat, B. Canet, E. Cleeman, J.-C.
Derniame, J. Ferrié, C. Kaiser, S. Krakowiak, J. Mossiére and J.-P. Verjus.

Contents

Preface
Acknowledgements

Chapter 1 Introduction 1
1.1 Functions of an operating system 1
1.2 Examples of operating systems 3
1.3 Historical development of operating systems 7
1.4 Structure of this book 18
1.5 Bibliographic notes 19
Exercise 20

Chapter 2 Execution and communication mechanisms 23

2.1 Sequential execution of a program 23
2.2 Interrupts, traps, supervisor calls 29
2.3 Implementation of context switching mechanisms 40
2.4 Input-output programming 50
2.5 Bibliographic notes 67
Exercises 68

Chapter 3 Organization of a simple operating system 71

3.1 Hierarchical decomposition and abstract machines 71
3.2 Organization of a single user system 76
3.3 Sharing a machine: virtual machines 96
3.4 Bibliographic notes 98
Exercises 99

Chapter 4 Management of parallel activities 105

4.1 Introductory examples 105
4.2 Concept of a sequential process 109
4.3 Synchronization between processes 116
4.4 Implementation of synchronization 122
4.5 Dynamic management of processes 143
4.6 Bibliographic notes 146

Exercises 147

Chapter 5 Implementation of synchronization mechanisms 155

5.1 Implementation of mutual exclusion 155
5.2 Functional structure of the synchronization kernel 165
5.3 Implementation of a synchronization kernel 170
5.4 Bibliographic notes 183
Exercises 183

vi

Chapter 6 Naming, storing, and binding objects 189

6.1
6.2

6.3
6.4
6.5

Underlying principles of information management 189
Application 1: naming and binding of files and input-output
devices 205

Application 2: linking of programs and data 215
Mechanisms for object management 225

Bibliographic notes 249

Exercises 250

Chapter 7 File management systems 253

7.1
7.2
73
7.4
7.5
7.6
T

Introduction 253

Logical organization of files 255

Physical organization of files 264
Implementation of elementary access functions
File security and protection 277

Example: the Unix FMS 282
Bibliographic notes 288

Exercises 288

[39)

72

Chapter 8 Models for resource allocation 291

8.1
8.2
8.3
8.4
8.5
8.6

Introduction 291

Introduction to single queue models 293

Models for the allocation of a single resource 301
Models of operating systems 311

Handling deadlocks 318

Bibliographic notes 324

Exercises 325

Chapter 9 Memory management 329

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Basic concepts of memory allocation 329

Program behavior 334

Sharing of memory without relocation 339

Dynamic allocation of memory by zones 342
Fundamental principles and mechanisms of paging 348
Management of a paged virtual memory 358
Management of a hierarchical memory 367
Bibliogrpahic notes 373

Exercises 374

Chapter 10 Structure of a multiprogrammed system 379

10.1 A partition system 379
10.2 A paging virtual memory system 387
10.3 Bibliographic notes 400

Exercises 400

Contents

Contents

Chapter 11 Distributed systems 403

11.1
11.2
11.3

114
11.5
11.6

Introduction 403

Communication systems 406

Functions and structure of a distributed operating
system 414

Problems of distribution 417

Case studies 433

Bibliographic notes 41

Exercises 442

Bibliography 447

Index

465

vii

Chapter 1
Introduction

Programs executed on a computer are generally classified, according to their
functions, under two headings: system software and application software.
The operating system is an important component of system software. The
aim of this introduction is to explain precisely what is meant by these terms,
to define the main functions of operating systems with a few examples as
illustrations, and finally to describe their common characteristics.

1.1 Functions of an operating system

A computer system is a combination of hardware and software intended to
carry out tasks involving the automatic processing of information. Such a
system is linked to the outside world by input-output mechanisms, allowing
it to communicate with human users or to interact with the physical devices it
is intended to control or to supervise.

The function of a computer system is to provide services suitable for the
resolution of common problems:

e Information management: storage, naming, retrieval, communication

e Preparation and debugging of programs

e Execution of programs

It is convenient to regard the services provided by a computer system as
defining, for the user, a new machine that is often called abstract or virtual as
opposed to the physical machine formed by the components of the
hardware. The description and operating instructions for these services form
the interface of the computer system. We can therefore say that this inter-
face defines a language, which is that of the abstract machine, and which
allows users to communicate with the system. All the information necessary
for the proper use of the system by a user (or by a connected physical device)
is contained in the interface.

The level of abstraction of the means of expression provided in this way
tends to increase with technical advances, i.e. the objects and operations
considered as elementary on the abstract machine are implemented by more
and more complex sets of objects and operations on the physical machine.
Furthermore, different users of a single computer system may require diffe-
rent abstract machines. To simplify the design of the system, it is convenient
to decompose the task to be carried out: in very broad terms, functions
common to many applications are implemented by a set of programs called

2 Chapter1

system software; application software, on the other hand, implements a
specific application by calling on the services provided by system software.
Figure 1.1 shows this form of organization by means of a hierarchical schema
where each layer uses the resources provided by the layer immediately
below and presents the layer above with an interface describing the re-
sources it offers; the interface of the highest layer is that of the whole
computer system. The concepts associated with the decomposition of
systems are discussed in detail in chapter 3.

Application software

System software

Physical machine

Fig. 1.1. Structure of a computer system

This structure should not be interpreted too strictly; in particular, the
boundaries between layers are often imprecise and moving: a program initi-
ally developed as an application program may be built into system software
ifit turns out to be a commonly used tool for a class of users; in the same way,
system software functions initially implemented by a program may be
implemented by a microprogram or by an electronic circuit if savings or
improved performance justify this step. Within system software itself, it is
common to distinguish two levels (fig. 1.2).

Tools and services
(compilers, loaders,
editors, utilities. . .)

Operating system

Fig. 1.2. Components of system software

Here again, the boundary cannot be strictly defined. The main functions
of the lower layer of the system software, the operating system, can be classi-
fied under two main headings.

1. Definition and implementation of a virtual machine

a. Information management: structuring, storage, naming (virtual
memory, files); transfer (input-output).

b. Execution control: execution of programs in sequence, in parallel,
program composition, etc.

Introduction - 3

c. Miscellaneous services: assistance to debugging, fault handling, time
measurement, etc.

2. Resource management and sharing

a. Management of physical resources: allocation of main memory, of
secondary memory, of input/output devices

b. Information sharing and exchange between users

¢. Mutual protection of users

d. Miscellaneous services: resource usage accounting, usage statistics,
performance measurement, etc.

Decomposition into layers as a structuring tool occurs again within
operating systems.

1.2 Examples of operating systems

The four examples below illustrate the variety of functions that an operating
system must carry out. These examples are characteristic of several major
classes of systems, but are not intended to be an exhaustive list. For each
example, we indicate the functions to be carried out and the major charac-
teristics required. Common characteristics of operating systems are sum-
marized in section 1.4.1.

1.2.1 Personal computers

A personal computer, in its simplest configuration, is made up of a central
processing unit, main memory and a terminal (screen and keyboard,
possibly a mouse). This configuration is generally supplemented by sec-
ondary memory (floppy disk) and a printer (fig. 1.3).

Floppy disk
Processor
MBary Screen
Keyboard
Printer
Mouse

Fig. 1.3. Personal computer

4 Chapter 1

Users of such systems essentially require two types of service:

e Creating and naming files, or structured sets of information; storage of
these files in secondary memory; transfer of information between files
and input/output devices (screen, keyboard, printer).

e Execution of programs which may be part of the system or be intro-
duced in the form of files; data are entered through the keyboard or
provided in a file; the results are displayed on the screen, listed on a
printer, or copied to a file.

The interface presented by the system to a user is a command language. A

command is a construction of the form

< action > <parameters >

input via the keyboard, or using a mouse, and immediately interpreted by
the system.
Here are two examples of typical sequences of actions:

1. Debugging programs

e Write a program at the keyboard (using a text editor)

e Execute of the program providing data through the keyboard

e Modify of the program if results are not satisfactory, and reexecute it
o Store the final version of the program

2. Operation

e Request the execution of a pre-existing program, or a program written
as above, using a set of data contained in a file or input on demand to the
keyboard. Results are displayed on the screen, listed on a printer or
copied to a file to be reused.

In such a system, there is no resource sharing, since the machine is being
used by a single user who has total control over it. Resource allocation
occurs for memory management and file loading. The main functions of the
operating system are file management, implementation of input/output and
interpretation of the command language.

For this type of system, the most important qualities are:

o Reliability .

e Efficiency (as the performance of the hardware is often low, it is

important to make the best possible use of it)

e Simplicity in use

e Ease of extension by adding new utility programs, or adapting to new
peripherals

The latter two aspects highlight the importance of a careful design of the

Introduction - 5

interfaces provided by the system, both for the command language and the
file management system.

The organization of a simple operating system for a personal computer is
discussed in chapter 3.

1.2.2 Control of industrial processes

In a chemical products factory, a reactor is used to synthesize product C
from two products A and B (fig. 1.4).

Reactor
Valves s ~
A —
Captors —C
= I
L —/ Measurement

signals
- Recording

Control signals

Computer

Fig. 1.4. Control of a chemical reactor

This manufacturing process is controlled by a computer, which carries out

three functions.

e Regulation. For the process to take place correctly, operating para-
meters (temperature, pressure, concentration, etc.) must be main-
tained within fixed limits. This means regulating the input rate of
products. Operating parameters are measured using sensors; the
computer collects these measurements and acts in consequence on the
input valves, as specified in a regulation program.

® Recording. The various results obtained by measurements are recorded
periodicalily, their values displayed on a control panel and copied into a
file (or ‘log’) with a view to additional processing later (operating statis-
tics).

e Security. If certain measured parameters exceed a predefined critical
value (as would be the case in an accident), emergency shutdown of the
reactor must take place.

Let us now examine the constraints introduced by this mode of opera-

tions.

1. Measurements are taken periodically; let T be the sampling period and

let ¢ be the total time necessary for the computer to process a set of measure-

6 ' Chapter 1

ments (collection, recording, determination and execution of valve
commands).

The system can only operate if
t<T

2. The security function must be given priority over all others; in other
words, it must be possible at any moment to detect that a critical value has
been exceeded and procedures for handling such an occurrence must inter-
rupt operations that are under way.

The main functions of the operating system are the following.

e To act on external devices (reading of sensors, control of valves)

e To schedule events in physical time (periodic triggering of the proces-

sing cycle)

e To react to external events (emergency shutdown)

e To manage information (storage and maintenance of the log file)

The specification of a physical limit to the duration of a computer process,
the existence of scheduling periods, the concept of priority handling and the
connection to equipment for the control or measurement of an external
device are characteristic of computer processes known as real time applica-
tions.

As well as process control, examples of the use of these systems are: the
management of telephone switchboards; automatic pilots for aircraft,
missiles or satellites; medical monitoring, robot control; etc.

For these systems, the major requirement is reliability. As the conse-
quences of a failure may be catastrophic, the system must be able to guarantee
the safety of the device it controls at any time: it must therefore be able to
guarantee a minimal service even in the case of a hardware breakdown, an
accident or a human error.

An example of a system kernel suitable for programming real time
systems is described in chapter 5.

1.2.3 Transaction systems

Transaction systems are characterized by the following properties.

1. The system manages a set of information, or database, which may be
very large (billions of bytes).

2. A certain number of predefined operations, or transactions, which are
often interactive, can be applied to this information.

Introduction - 7

3. The system has a large number of access points (terminals) and many
transactions can take place simultaneously.

Systems used to handle rail or air seat reservation, to manage bank
accounts or to retrieve documents, are all examples of transaction systems.

Information contained in the system database is subject to integrity const-
raints expressing its internal consistency. These constraints obviously
depend on the application: e.g. the number of seats reserved in a train may
not exceed the number of seats available, the same seat cannot be assigned
to more than one person, etc. Execution of a transaction must maintain the
consistency of the information.

The qualities required of a transaction system are availability and reli-
ability; for certain systems, fault-tolerance is also essential. Important
characteristics of transaction systems are that they cater to many parallel
activities, and, in many cases, components are widely spread geographic
ally, which leads to specific problems (see section 1.3.3).

1.2.4 Time-sharing systems

The function of a time-sharing system is to provide services to a geQup of
users; each of them may use:

e Services equivalent to those available on a personal computer

e Services associated with the existence of a community of users: sharing

of information, communication between users

Moreover, thanks to the sharing of costs between a large number of users,
it is possible to offer each of them common services that would not be avail-
able individually, such as access to special peripherals (graphics output, etc.)
or to complex software requiring large amounts of memory.

The problems involved in designing time-sharing systems therefore
combine those of personal computers and those of transaction systems.
They can be classified as follows:

e Definition of the virtual machine offered to each user

e Sharing and allocation of common physical resources: processors,

memory, input output devices

e Management of shared information (files) and of communication

The qualities required of a time-sharing system also cover those of a
personal machine and of a transaction system: availability, reliability,
security; efficient use of the hardware; quality of the interface and of the
services provided to users; ease of extension and adaptation.

1.3 Historical development of operating systems

A rapid description of the way operating systems have evolved will give a

