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Preface

The notion of an operad was introduced 40 years ago in algebraic topology
in order to model the structure of iterated loop spaces [6, 47, 60]. Since then,
operads have been used fruitfully in many fields of mathematics and physics.

Indeed, the notion of an operad supplies both a conceptual and effective
device to handle a variety of algebraic structures in various situations. Many
usual categories of algebras (like the category of commutative and associative
algebras, the category of associative algebras, the category of Lie algebras,
the category of Poisson algebras, ...) are associated to operads.

The main successful applications of operads in algebra occur in deforma-
tion theory: the theory of operads unifies the construction of deformation
complexes, gives generalizations of powerful methods of rational homotopy,
and brings to light deep connections between the cohomology of algebras,
the structure of combinatorial polyhedra, the geometry of moduli spaces
of surfaces, and conformal field theory. The new proofs of the existence of
deformation-quantizations by Kontsevich and Tamarkin bring together all
these developments and lead Kontsevich to the fascinating conjecture that
the motivic Galois group operates on the space of deformation-quantizations
(see [35]).

The purpose of this monograph is to study not operads themselves, but
modules over operads as a device to model functors between categories of
algebras as effectively as operads model categories of algebras.

Modules over operads occur naturally when one needs to represent univer-
sal complexes associated to algebras over operads (see [14, 54]).

Modules over operads have not been studied as extensively as operads yet.
However, a generalization of the theory of Hopf algebras to modules over
operads has already proved to be useful in various mathematical fields: to
organize Hopf invariants in homotopy theory [2]; to study non-commutative
generalizations of formal groups [12, 13]; to understand the structure of cer-
tain combinatorial Hopf algebras [38, 39]. Besides, the notion of a module over
an operad unifies and generalizes classical structures, like Segal’s notion of a
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I'-object, which occur in homological algebra and homotopy theory. In [33],
Kapranov and Manin give an application of the relationship between mod-
ules over operads and functors for the construction of Morita equivalences
between categories of algebras.

Our own motivation to write this monograph comes from homotopy theory:
we prove, with a view to applications, that functors determined by modules
over operads satisfy good homotopy invariance properties.
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Introduction

Main Ideas and Objectives

The background of the theory of operads is entirely reviewed in the first
part of the monograph. The main characters of the story appear in a natural
generalization of the symmetric algebra S(X'), the module spanned by tensors
T, ® - ®x, € X® divided out by the symmetry relations

Tw(l) & @ Tyn) =T1 &+ & Tnp,

where w ranges permutations of (1,...,n). Formally, the symmetric algebra is
defined by the expansion S(X) = @y~ ,(X®")x,, where the notation (—)x,
refers to a module of coinvariants under the action of the symmetric group of
n-letters, denoted by X,. The theory of operads deals with functors S(M) :

X — S(M, X) of generalized symmetric tensors

S(M, X) = é(M(n) ® X®")x

n=0

n

with coefficients in objects M (n) equipped with an action of the symmetric
groups L,. The structure formed by the coefficient sequence M = {M(n) }nen
is called a X.-object (or, in English words, a symmetric sequence or a sym-
metric object). The definition of S(M, X) makes sense in the setting of a
symmetric monoidal category £. The map S(M) : X — S(M, X) defines a
functor S(M) : £ — E£.

In this book we study a generalization of this construction with the aim
to model functors on algebras over operads. For an operad P, we use the
notation p€ to refer to the category of P-algebras in £. We aim to model
functors F' : € — & from a category of algebras over an operad R to the
underlying category £, functors F : £ — p€ from the underlying category &
to a category of algebras over an operad P, as well as functors F' : g€ — p&€
from a category of algebras over an operad R to another category of algebras
over an operad P.
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To define functors of these types we use left and right modules over
operads, the structures formed by X,-objects equipped with left or right op-
erad actions. For a right R-module M and an R-algebra A, we use a coequalizer
to make the right R-action on M agrees with the left R-action on A in the
object S(M, A). This construction returns an object Sg(M, A) € £ naturally
associated to the pair (M, A) and the map Sg(M) : A — Sg(M, A) defines a
functor Sg(M) : g€ — £ naturally associated to M. For a left P-module N
the map S(N) : X — S(N, X) defines naturally a functor S(N) : £ — €.
For a P-R-bimodule N, a right R-module equipped with a left P-action that
commutes with the right R-action on N, the map Sg(N) : A — Sp(N, A)
defines naturally a functor Sg(NN) : g€ — p€.

We study the categorical and homotopical properties of functors of these
form.

Not all functors are associated to modules over operads, but we check
that the categories of modules over operads are equipped with structures
that reflect natural operations on functors. As a byproduct, we obtain that
usual functors (enveloping operads, enveloping algebras, Kahler differentials,
bar constructions, ... ), which are composed of tensor products and colimits,
can be associated to modules over operads.

In homotopy theory, operads are usually supposed to be cofibrant in the
underlying category of Y.-objects in order to ensure that the category of
algebras over an operad has a well defined model structure. In contrast, the
category of right modules over an operad R comes equipped with a natural
model structure which is always well defined if the operad R is cofibrant in the
underlying symmetric monoidal category. Bimodules over operads form model
categories in the same situation provided we restrict ourself to connected
XY,-objects for which the constant term N (0) vanishes. Thus for modules over
operads we have more homotopical structures than at the algebra and functor
levels. As a result, certain homotopical constructions, which are difficult to
carry out at the functor level, can be realized easily by passing to modules
over operads (motivating examples are sketched next). On the other hand, we
check that, for functors associated to cofibrant right modules over operads,
homotopy equivalences of modules correspond to pointwise equivalences of
functors. In the case where algebras over operads form a model category, we
can restrict ourself to cofibrant algebras to obtain that any weak-equivalence
between right modules over operads induce a pointwise weak-equivalence of
functors. These results show that modules over operads give good models for
the homotopy of associated functors.

We use that objects equipped with left operad actions are identified with
algebras over operads provided we change the underlying symmetric monoidal
category of algebras. Suppose that the operad R belongs to a fixed base sym-
metric monoidal category C. The notion of an R-algebra can be defined in
any symmetric monoidal category £ acted on by C, or equivalently equipped
with a symmetric monoidal functor n : C — £.
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The category of X,-objects in C forms an instance of a symmetric monoidal
category over C, and so does the category of right R-modules. One observes
that a left P-module is equivalent to a P-algebra in the category of X,-objects
and a P-R-bimodule is equivalent to a P-algebra in the category of right R-
modules, for any operads P,R in the base category C.

Because of these observations, it is natural to assume that operads belong
to a base category C and algebras run over any symmetric monoidal category
& over C. We review constructions of the theory of operads in this relative
context. We study more specifically the functoriality of operadic constructions
with respect to the underlying symmetric monoidal category. We can deduce
properties of functors of the types S(N) : € — p€ and Sg(N) : g€ — €
from this generalization of the theory of algebras over operads after we prove
that the map Sy : M +— Sp(M) defines a functor of symmetric monoidal
categories, like S : M — S(M). For this reason, the book is essentially devoted
to the study of the category of right R-modules and to the study of functors
Sr(M) : € — & associated to right R-modules.

Historical Overview and Prospects

Modules over operads occur naturally once one aims to represent the
structure underlying the cotriple construction of Beck [3] and May [47, §9].
As far as we know, a first instance of this idea occurs in Smirnov’s pa-
pers [56, 57] where an operadic analogue of the cotriple construction is
defined. This operadic cotriple construction is studied more thoroughly in
Rezk’s thesis [54] to define a homology theory for operads.

The operadic bar construction of Getzler-Jones [17] and the Koszul con-
struction of Ginzburg-Kapranov [18] are other constructions of the homology
theory of operads. In [14], we prove that the operadic cotriple construction,
the operadic bar construction and the Koszul construction are associated to
free resolutions in categories of modules over operads, like the bar construc-
tion of algebras.

Classical theorems involving modules over algebras can be generalized to
the context of operads: in [33], Kapranov and Manin use functors of the form
Sr(N) : € — p& to define Morita equivalences for categories of algebras over
operads. '

Our personal interest in modules over operads arose from the Lie theory of
formal groups over operads. In summary, we use Lie algebras in right modules
over operads to represent functors of the form Sg(G) : € — L&, where L refers
to the operad of Lie algebras. Formal groups over an operad R are functors on
nilpotent objects of the category of R-algebras. For a nilpotent R-algebra A,
the object Sg(G, A) forms a nilpotent Lie algebra and the Campbell-Hausdorff
formula provides this object with a natural group structure. Thus the map
A — Sy(G, A) gives rise to a functor from nilpotent R-algebras to groups.
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The Lie theory asserts that all formal groups over operads arise this way
(see [11, 12, 13]). The operadic proof of this result relies on a generalization
of the classical structure theorems of Hopf algebras to Hopf algebras in right
modules over operads. Historically, the classification of formal groups was
first obtained by Lazard in [37] in the formalism of “analyzers”, an early
precursor of the notion of an operad.

Recently, Patras-Schocker [49], Livernet-Patras [39] and Livernet [38] have
observed that Hopf algebras in X',-objects occur naturally to understand the
structure of certain classical combinatorial Hopf algebras.

Lie algebras in Y,-objects were introduced before in homotopy theory by
Barratt (see [2], see also [19, 61]) in order to model structures arising from
Milnor’s decomposition

N(X1V Xa) ~ \ w(X1, Xa),

w

where w runs over a Hall basis of the free Lie algebra in 2-generators z,,z2
and w(X1, X2) refers to a smash product of copies of X;, X, (one per occur-
rence of the variables x1,xy in w).

In sequels [15, 16] we use modules over operads to define multiplicative
structures on the bar complex of algebras. Recall that the bar complex
B(C*(X)) of a cochain algebra A = C*(X) is chain equivalent to the cochain
complex of 22X, the loop space of X (under standard completeness assump-
tions on X). We obtain that this cochain complex B(C*(X)) comes naturally
equipped with the structure of an E-algebra so that B(C* (X)) is equivalent
to C*(£2X) as an E-algebra.

Recall that an F..-operad refers to an operad E equipped with a weak-
equivalence E = C, where C is the operad of associative and commutative
algebras. An E-algebra is an algebra over some E-operad. Roughly an
E-operad parameterizes operations that make an algebra structure com-
mutative up to a whole set of coherent homotopies.

In the differential graded context, the bar construction B(A) is defined
naturally for algebras A over Stasheff’s chain operad, the operad defined by
the chain complexes of Stasheff’s associahedra. We use the letter K to refer
to this operad. We observe that the bar construction is identified with the
functor B(A) = Sk(Bx, A) associated to a right K-module Bx. We can restrict
the bar construction to any category of algebras associated to an operad R
equipped with a morphism 7 : K — R. The functor obtained by this restriction
process is also associated to a right R-module B obtained by an extension
of structures from Bg. Homotopy equivalent operads R — S have homotopy
equivalent modules By — Bs.

The bar module B¢ of the commutative operad C has a commutative
algebra structure that reflects the classical structure of the bar construction
of commutative algebras. The existence of an equivalence B — B, where
E is any E,.-operad, allows us to transport the multiplicative structures of
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the bar module B¢ to B and hence to obtain a multiplicative structure on
the bar complex of E.-algebras. Constructions and theorems of this book
are motivated by this application.

Note that modules over operads are applied differently in [25] in the study
of structures on the bar construction: according to this article, modules over
operads model morphisms between bar complexes of chain algebras.

In [15], we only deal with multiplicative structures on modules over op-
erads and with multiplicative structures on the bar construction, but the
bar complex forms naturally a coassociative coalgebra. In a subsequent pa-
per [16], we address coalgebras and bialgebras in right modules over operads
in order to extend constructions of [15] to the coalgebra setting and to obtain
a bialgebra structure on the bar complex.

For a cochain algebra, the comultiplicative structure of the bar complex
B(C*(X)) models the multiplicative structure of the loop space 2X . Bialge-
bras in right modules over operads give rise to Lie algebras, like the classical
ones. One should expect that Lie algebras arising from the bar module By
are related to Barratt’s twisted Lie algebras.

Contents

The sections, paragraphs, and statements marked by the sign ‘9’ can be
skipped in the course of a normal reading. These marks q refer to refinement
outlines.

Part I. Categorical and Operadic Background

The purpose of the first part of the book is to clarify the background of our
constructions. This part does not contain any original result, but only changes
of presentation in our approach of operads. Roughly, we make use of functors
of symmetric monoidal categories in standard operadic constructions.

§1. Symmetric Monoidal Categories for Operads

First of all, we give the definition of a symmetric monoidal category £ over
a base symmetric monoidal category C. Formally, a symmetric monoidal cat-
egory over C is an object under C in the 2-category formed by symmet-
ric monoidal categories and symmetric monoidal functors. In §1 we give
equivalent axioms for this structure in a form suitable for our applications.
Besides, we inspect properties of functors and adjunctions between symmetric
monoidal categories.
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§2. Symmetric Objects and Functors

We survey categorical properties of the functor S : M +— S(M) from
XY ,-objects to functors F' : £ — £. More specifically, we recall the definition of
the tensor product of X,-objects, the operation that gives to X.-objects the
structure of a symmetric monoidal category over C, and the definition of the
composition product of X,-objects, an operation that reflects the composi-
tion of functors. For the sake of completeness, we also recall that the functor
S: M — S(M) has a right adjoint I" : G — I'(G). In the case £ = C = k Mod,
the category of modules over a ring k, we use this construction to prove
that the functor S : M +— S(M) is bijective on morphism sets for projective
X .-objects or if the ground ring is an infinite field.

§3. Operads and Algebras in Symmetric Monoidal Categories

We recall the definition of an algebra over an operad P. We review the
basic examples of the commutative, associative, and Lie operads, which are
associated to commutative and associative algebras, associative algebras and
Lie algebras respectively.

We assume that the operad P belongs to the base category C and we define
the category p€ of P-algebras in a symmetric monoidal category £ over C. We
observe that any functor p : D — £ of symmetric monoidal categories over
C induces a functor on the categories of P-algebras p : pD — &, for any
operad P in the base category C. We review the classical constructions of
free objects, extension and restriction functors, colimits in categories of alge-
bras over operads, and we check that these constructions are invariant under
changes of symmetric monoidal categories. We review the classical definition
of endomorphism operads with similar functoriality questions in mind.

At this point, we study the example of algebras in X,-objects and the
example of algebras in functors. We make the observation that a left module
over an operad P is equivalent to a P-algebra in X.-objects. We also observe
that a functor F : X — p&, where X' is any source category, is equivalent
to a P-algebra in the category of functors of the form F : X — £. We use
that S : M — S(M) defines a symmetric monoidal functor to obtain the
correspondence between left P-modules N and functors S(N) : £ — p€.

§4. Miscellaneous Structures Associated to Algebras
over Operads

We recall the definition of miscellaneous structures associated to algebras
over operads: enveloping operads, which model comma categories of algebras
over operads; enveloping algebras, which are associative algebras formed from
the structure of enveloping operads; representations, which are nothing but
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modules over enveloping algebras; and modules of Kahler differentials, which
represent the module of derivations of an algebra over an operad. We study
applications of these notions to the usual operads: commutative, associative,
and Lie. For each example, the operadic definition of an enveloping algebra
is equivalent to a standard construction of algebra, and similarly as regards
representations and Kahler differentials.

Part II. The Category of Right Modules over Operads
and Functors

In the second part of the book, we study categorical structures of right mod-
ules over operads and functors. Roughly, we prove that the categories of right
modules over operads are equipped with structures that reflect natural op-
erations at the functor level. This part contains overlaps with the literature
(with [13] and [54, Chapter 2] in particular). Nevertheless, we prefer to give
a comprehensive account of definitions and categorical constructions on right
modules over operads.

§5. Definitions and Basic Constructions

First of all, we recall the definition of a right module over an operad R and
of the associated functors Sg(M) : A — Sp(M, A), where the variable A
ranges over R-algebras in any symmetric monoidal category £ over the base
category C.

In the book, we use the notation M for the category of X.-objects in
the base category C and the notation F for the category of functors F' :
& — &, where € is any given symmetric monoidal category over C. The map
S : M — S(M) defines a functor S : M — F. In a similar way, we use the
notation My for the category of right R-modules and the notation F g for
the category of functors F' : g€ — £. The map Sg : M — Sgp(M) defines a
functor Sg : Mg — Fi.

§6. Tensor Products

For any source category A, the category of functors F': A — £ has a natural
tensor product inherited pointwise from the symmetric monoidal category
£. In the first part of this introduction, we mention that the category of
Y«-objects M comes also equipped with a natural tensor product, as well as
the category of right R-modules M. The definition of the tensor product of
Y'«-objects is recalled in §2. The tensor product of right R-modules is derived
from the tensor product of X,-objects and this definition is recalled in §6.
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Classical theorems assert that the functor S : M — S(M) satisfies S(M ®
N) ~ S(M) ® S(N). In §6, we check that the functor Sy : M — Sz(M)
satisfies similarly Sp(M ® N) ~ Sg(M) ® Sg(IN). Formally, we prove that the
map Sg : M — Sgp(M) defines a functor of symmetric monoidal categories
over C:

(M, ®,1) 2 (Fr, ®,1).

§7. Universal Constructions on Right Modules over Operads

An operad morphism 1) : R — S gives rise to extension and restriction functors
¥ 1 RE 2 &€ : Y. The composition of functors F' : g€ — £ with the restriction
functor ' : € — g€ defines an extension functor on functor categories:
Yn : Fr — Fs. In the converse direction, the composition of functors G :
g€ — £ with the extension functor ¢y : g€ — &€ defines a restriction functor
Y' 1 Fs — Fr. These extension and restriction functors vy : Fg = Fg: ¢
form a pair of adjoint functors.

At the level of module categories, we also have extension and restriction
functors ¢y : Mg 2 Mg : ' that generalize the classical extension and
restriction functors of modules over associative algebras. We prove that these
operations on modules correspond to the extension and restriction of functors.
Explicitly, we have natural functor isomorphisms s Sg(M) ~ Ss(¢nM) and
¥' Sp(M) ~ Sg(1p' M). Besides, we check the coherence of these isomorphisms
with respect to adjunction relations and tensor structures.

In the particular case of the unit morphism of an operad, we obtain that
the composite of a functor Sg(M) : g€ — £ with the free R-algebra functor
is identified with the functor S(M) : £ -- £ associated to the underlying X,-
object of M. In the converse direction, for a X,-object L, we obtain that the
composite of the functor S(L) : £ — £ with the forgetful functor U : g€ — £ is
identified with the functor associated to a free right R-module associated to L.

§8. Adjunction and Embedding Properties

The functor Sy : Mg — Fpg has a right adjoint I'y : Fr — May, like the
functor S : M — F. In the case £ = C = kMod, the category of modules
over a ring k, we use this result to prove that the functor Sg : M +— Sg(M)
is bijective on morphism sets in the same situations as the functor S : M —

S(M) on X.-objects.

§9. Algebras in Right Modules over Operads

We study the structure of algebras in a category of right modules over an op-
erad. We observe at this point that a bimodule over operads P, R is equivalent
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to a P-algebra in right R-modules. We use that Sg : M +— Sg(M) defines
a symmetric monoidal functor to obtain the correspondence between P-R-
bimodules N and functors S(N) : € — p€, as in the case of left P-modules.
We review applications of the general theory of §3 to this correspondence
between P-algebra structures.

§10. Miscellaneous Examples

To give an illustration of our constructions, we prove that enveloping oper-
ads, enveloping algebras and modules of Kahler differentials, whose defini-
tions are recalled in §4, are instances of functors associated to modules over
operads. Besides we examine the structure of these modules for classical op-
erads, namely the operad of associative algebras A, the operad of Lie algebras
L, and the operad of associative and commutative algebras C.

New examples of functors associated to right modules over operads can be
derived by using the categorical operations of §6, §7 and §9.

Part I11. Homotopical Background

The purpose of the third part of the book is to survey applications of homo-
topical algebra to the theory of operads. We review carefully axioms of model
categories to define (semi-)model structures on categories of algebras over op-
erads. We study with more details the (semi-)model categories of algebras in
differential graded modules.

This part does not contain any original result, like our exposition of the
background of operads, but only changes of presentations. More specifically,
we observe that crucial verifications in the homotopy theory of algebras over
operads are consequences of general results about the homotopy of functors
associated to modules over operads. In this sense, this part gives first moti-
vations to set a homotopy theory for modules over operads, the purpose of
the fourth part of the book.

§11. Symmetric Monoidal Model Categories For Operads

First of all, we review the axioms of model categories and the construction of
new model structures by adjunction from a given model category. The model
categories introduced in this book are defined by this adjunction process.

The notion of a symmetric monoidal model category gives the background
for the homotopy theory of operads. We give axioms for a symmetric monoidal
model category £ over a base symmetric monoidal model category C.

We prove that the category of X,-objects inherits a model structure and
forms a symmetric monoidal model category over the base category. Then we



