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Preface

The goal of this research monograph is to develop a general combination, de-
composition, and structure theory for branched coverings of the two-sphere
to itself, regarded as the combinatorial and topological objects which arise
in the classification of certain holomorphic dynamical systems on the Rie-
mann sphere. It is intended for researchers interested in the classification of
those complex one-dimensional dynamical systems which are in some loose
sense tame, though precisely what this constitutes we leave open to interpre-
tation. The program is motivated in general by the dictionary between the
theories of iterated rational maps and Kleinian groups as holomorphic dynam-
ical systems, and in particular by the structure theory of compact irreducible
three-manifolds.

By and large this work involves only topological/combinatorial notions.
Apart from motivational discussions, the sole exceptions are (i) the construc-
tion of examples which is aided using complex dynamics in §9, and (ii) some
familiarity with the Douady-Hubbard proof of Thurston’s characterization of
rational functions in §§8.3.1 and §10.

The combination and decomposition theory is developed for maps which
are not necessarily posteritically finite. However, the proof of the main struc-
ture result, the Canonical Decomposition Theorem, depends on Thurston’s
characterization and is developed only for postcritically finite maps. A sur-
vey of known results regarding combinatorics and combination procedures for
rational maps is included.

This research was partially supported by NSF grant No. DMS-9996070,
the University of Missouri at Rolla, and Indiana University. I thank Albert
Goodman for timely advice on group actions which were particularly helpful in
proving the results in §7. I thank Curt McMullen for encouraging me to think
big. I am especially grateful to Mary Rees and to the referees for valuable
comments. Finally, I thank my family for their unwavering support.

Bloomington, Indiana, USA, Kevin M. Pilgrim
August, 2003
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1

Introduction

1.1 Motivation from dynamics—a brief sketch

This work is about the combinatorial aspects of rigidity phenomena in complex
dynamics. It is motivated by discoveries of Douady-Hubbard [DH1|, Milnor-
Thurston [MT], and Sullivan made during the early 1980’s (see the preface by
Hubbard in [Tan4] for a firsthand account).

In the real quadratic family f,(z) = (2% + a)/2,a € R, it was proven [MT]
that the entropy of f, as a function of a is continuous, monotone, and in-
creasing as the real parameter varies from a = 5 to a = 8. A key ingredient of
their proof is a complete combinatorial characterization and rigidity result for
critically periodic maps f,, i.e. those for which the unique critical point at the
origin is periodic. To any map f, in the family one associates a combinatorial
invariant, called its kneading invariant. Such an invariant must be admissible
in order to arise from a map f,. It was shown that every admissible kneading
invariant actually arises from such a map f,, and that if two critically peri-
odic maps have the same kneading invariant, then they are affine conjugate.
In a process called microimplantation the dynamics of one map f, could be
“glued” into that of another map f,, where f,, is critically periodic to obtain
a new map fu.q, in this family. More precisely: a topological model for the
new map is constructed, and its kneading invariant, which depends only on
the topological data, is computed. The result turns out to be admissible, hence
by the characterization theorem defines uniquely a new map f,,«,. This con-
struction interprets the cascade of period-doublings as the limit lim,,—~ fa,
where a,4+1 = a, * ap and ay is chosen so that the critical point is periodic
of period two. As an application, it is shown that there exists an uncountable
family of maps with distinct kneading invariants but with the same entropy.

Similar combinatorial rigidity phenomena were also observed for maps
fe(z) = 22 + ¢, ¢ € C in the complex setting. For “critically periodic” pa-
rameters ¢ for which the critical point at the origin is periodic, the dynamics
restricted to the filled-in Julia set K. = {z|f°"(z) /4 oo} looks roughly like a
map from a tree to itself (here f°" is the n-fold iterate of f). The dynamics
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of f. can be faithfully encoded by what became later known as a Hubbard
tree. a finite planar tree equipped with a self-iap, subject to some reasonable
admissibility criteria. Alternatively, via what became known as the theory of
tmvariant laminations, the dynamics of f can be encoded by a single rational
number = p/q € (0,1), where the denominator ¢ is odd. As in the setting
of interval maps, the manner in which the critically periodic parameters ¢
are deployed in the parameter plane has a rich combinatorial structure. A
procedure known as tuning generalizes the process of microimplantation. The
inverse of tuning became known as renormalization and explains the presence
of small copies of the Mandelbrot set inside itself.

Among rational maps, Douady and Hubbard noticed from computer exper-
iments that a different combination procedure, now called mating , explained
the dynamical structure of certain quadratic rational functions in terms of a
pair of critically finite polynomials. However, not all such pairs of polynomi-
als were “mateable”, i.e. produced a rational map when mated obstructions
could arise.

The combinatorial characterization and rigidity result for critically peri-
odic unimodal interval maps was greatly generalized by Thurston [DH3] to
posteritically finite rational maps, i.e. those rational maps f : C->C acting
on the Riemann sphere such that the posteritical set

Py = Uy~ fon({critical points})

is finite. This characterization was then applied to completely resolve the
question of when two critically finite quadratic polynomials are mateable.

1.2 Thurston’s Characterization and Rigidity Theorem.
Standard definitions

The following discussion summarizes the main results of [DH3|. Denote by S5
the Euclidean two-sphere. By a branched covering F : S? — S? we mean a
continuous orientation-preserving map of topological degree d > 1 such that
for all & € S?, there exist local charts about = and y = F(x) sending x and y
to 0 € C such that within these charts, the map is given by z + 2%, where
d, > 1is the local degree of F' at x. The prototypical example is a rational
function F : C — C of degree at least two. If d, > 2 we call x a critical point;
d, — 1 1is its multiplicity. The Riemann-Hurwitz formula implies that counted
with multiplicity, there are 2d — 2 such critical points. The postcritical set is
defined as

Pr = U Fon({critical points})
n>0
and when F' is rational the topology and geometry of this set plays a crucial
role in the study of complex dynamics in one variable. Note that Pp contains
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the set of critical values of F, so that in particular F°" : §? — F~"(Pp) —
S? — Pp is an unramified covering for all n > 1.

The simplest possible behavior of Pr occurs when this set is finite; in this
case, F' is said to be posteritically finite . “Postcritically finite” is sometimes
shortened to critically finite, and such maps F' are called here Thurston maps.

Combinatorial equivalence. Two Thurston maps F, G are said to be com-
binatorially equivalent if there exist orientation-preserving homeomorphisms
of pairs hg,hy : (S%, Pr) — (5%, Pg) such that hgo ' = G o hy and hy is
isotopic to h; through homeomorphisms agreeing on Pp.

Orbifolds. The orbifold O associated to F' is the topological orbifold with
underlying space S? and whose weight v(x) at x is the least common multiple
of the local degree of F' over all iterated preimages of x (infinite weight is
interpreted as a puncture). The FEuler characteristic of Op

X(Op)=2- > (1—1/v(z))

r€Pp

is always nonpositive; if it is zero it is called Fuclidean, or parabolic; otherwise
it is called hyperbolic.
Expanding metrics. For later reference, we discuss expanding metrics. Sup-
pose Fis a C'' Thurston map with orbifold Op. Let Pjt denote the punctures
of Op (i.e. points eventually landing on a periodic critical point under itera-
tion). F' is said to be expanding with respect to a Riemannian metric || - || on
S? — Prif:
1. any compact piecewise smooth curve inside S? — P{ has finite length,
2. the distance d(-,-) on S? — Pg determined by lengths of curves computed
with respect to || - || is complete,
3. for some constants C' > 0 and A > 1, we have that for any n > 0, for any
p € 8% — F~"(Pp), and any tangent vector v € T),(S?),

DS (0)]] > CA"[v]].
Then we have the useful estimate

I(a) < C7'IA"(a)
whenever & is a lift under f°" of a curve o € S? — P#; here [ is length with
respect to || - ||

Multicurves. Let v be a simple closed curve in S? — Pp. By a multicurve we
mean a collection

I'={m,...,I}
of simple, closed, disjoint, pairwise non-homotopic, non-peripheral curves in
S? — Pp. A curve v is peripheral in S? — Pp if some component of its comple-
ment contains only one or no points of Pp.
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In [DH3] a multicurve I is called F'-invariant (or sometimes, “F-stable”)
if for any v € I', each component of F'~1(«) is either peripheral with respect
to Pp, or is homotopic in $? — Pp to an element of I". By lifting homotopies,
it is easily seen that this property depends only on the set [I'] of homotopy
classes of elements of I' in S? — Pr.. We shall actually require a slightly stronger
version of this definition, given in §1.8.3.

Thurston linear map. Let R’ be the vector space of formal real linear
combinations of elements of I'. Associated to an F-invariant multicurve I is
a linear map

Fr:RI 5 RF

defined as follows. Let 7; ;.o be the components of F'~!(~;) which are homo-
topic to v; in $% — Pp. Define

1
FI‘(AIJ) = Z (1__71
By 0

[N81

where d; j o is the (positive) degree of the map F|v; j o : Vija — ;- Then Fp
has spectral radius realized by a real nonnegative eigenvalue A(F,I"), by the
Perron-Frobenius theorem.

Thurston’s theorem is

Theorem 1.1 (Thurston’s characterization and rigidity theorem). A
Thurston map F with hyperbolic orbifold is equivalent to a rational function if
and only if for any F-stable multicurve I' we have X(f, ") < 1. In that case,
the rational function is unique up to congugation by an automorphism of the
Riemann sphere.

Thurston maps with Euclidean orbifold are treated as well. The postcritical
set of such a map has either three or four points. In the former case, any
such map is equivalent to a rational map unique up to conjugacy. In the
latter case, the orbifold has four points of order two, and the map lifts to an
endomorphism Tr of a complex torus. Douady and Hubbard show that in this
case F'is equivalent to a rational map if and only if either (1) the eigenvalues
of the induced map on H(TF) are not real, or (2) this induced map is a real
multiple of the identity. Here, though, the uniqueness (rigidity) conclusion can
fail. For example, in square degrees d = n?, it is possible that T is given by
w +— n - w, so that by varying the shape of the complex torus one obtains a
complex one-parameter family of postcritically finite rational maps which are
all quasiconformally conjugate. These examples are known as integral Lattés
cramples; see Section 9.3.

Idea of the proof. The idea of the proof is the following. Associated to
[ is a Teichmiiller space Tz modelled on (52, Pr), and an analytic self-map
op T — Tr. The existence of a rational map combinatorially equivalent to
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F'is equivalent to the existence of a fixed point of 0. The map o is distance-
nonincreasing for the Teichmiiller metric, and if the associated orbifold is
hyperbolic, 0% decreases distances, though not necessarily uniformly. To find
a fixed point, one chooses arbitrarily 7y € Tp and considers the sequence
7. = o3 (10). If {r;} fails to converge, then the length of the shortest geodesic
on 7, in its natural hyperbolic metric, must become arbitrarily small. In this
case, for some i sufficiently large, the family of geodesics on 7; which are both
sufficiently short and sufficiently shorter than any other geodesics on 7; form
an invariant multicurve whose leading eigenvalue cannot be less than one, i.e.
is a Thurston obstruction .

For a nonperipheral simple closed curve v C S? — Pp let [.(y) denote
the hyperbolic length of the unique geodesic on the marked Riemann surface
given by 7 which is homotopic to . In [DH3] the authors show by example
that it is possible for curves of two different obstructions to intersect, thus
preventing their lengths from becoming simultaneously small. Hence, if I is
an obstruction and v € I', then it is not necessarily true that inf;{/,(v)} = 0.
Moreover, their proof does not explicitly show that if F' is obstructed, then
inf;{l;,(v)} = 0 for some fixed curve v. Thus it is conceivable that, for each
i, there is a curve «; such that

inf{l-,(v:)} =0

while for fixed 7
inf{l; (vi)} > 0.
J

In [Pil2] this possibility was ruled out:

Theorem 1.2 (Canonical obstruction). Let F' be a Thurston map with
hyperbolic orbifold, and let I'. denote the set of all homotopy classes of non-
peripheral, simple closed curves v in S? — Pp such that I,,(v) — 0 as i — oc.
Then I'. is independent of T;. Moreover:

1. If I is empty, then F is combinatorially equivalent to a rational map.

2. Otherwise, I'. is an F-stable multicurve for which \(F, I'.) > 1, and hence
is a canonically defined Thurston obstruction to the existence of a rational
map combinatorially equivalent to F.

The proof also showed, with the same hypotheses,

Theorem 1.3 (Curves degenerate or stay bounded). Let v be a nonpe-

ripheral, simple closed curve in S* — Pp.

1. Ify €I, then . (v) = 0 asi — co.
2. Ify € I'.., then l.,(y) > E for alli, where E is a positive constant depend-
mg on 1y but not on .
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1.3 Examples

Formal mating. Formal mating is a combination process which takes as
input two monic complex polynomials f, g of the same degree d and returns
as output a branched covering F' = F , of the two-sphere. Let f, g be two
monic complex polynomials of degree d > 2. Compactify the complex plane C
toC = CuU{oc-exp(2mit), t € R/Z} by adding the circle at infinity, thus making
C homeomorphic to a closed disk. Extend f continuously to f: Cf — Cf by
setting f(oo - exp(2mit)) = oo - exp(2midt) and do the same for g.

Let S'f-” denote the quotient space C; U C,/ ~, where oo - exp(27it) ~
is defined as the map

~x - exp(—2mit). The formal mating Fy , : S%,’ o Sf_q

induced by f on (f:f and by g on C,,.

1.3.1 A realizable mating

Let f(z) = z2—1and g(z) = z2+c¢ where ¢ is the unique complex parameter for
which the critical point at the origin is periodic of period three and Im(c¢) > 0.
Then the formal mating F of f and ¢ is combinatorially equivalent to a
rational map; see Figure 1.1.

1.3.2 An obstructed mating

Let f(z) = g(z) = 22 — 1 and denote by F' the formal mating of f and g. Since
the origin is periodic of period two under z? — 1, the postcritical set of I has
four points and the orbifold O is the four-times punctured sphere. F' is not
combinatorially equivalent to a rational map. To see this, let v € 5% = S'ﬁg
be the simple closed curve formed by two copies, one in each of @,.C,,. of
{x -exp(2mil/3)} U Ry /3 U {a} U Ry/3 U {oc - exp(271i2/3)} where a is the
common landing point of Ry/3, Ry/3. (see §1.5.1 for relevant definitions, or
just look at Figure 1.2 below.)

Since z? — 1 interchanges Ry/3 and Ry, F sends v to itself by an
orientation-reversing homeomorphism. Hence I' = {7} is an invariant mul-
ticurve for which the Thurston matrix is simply (1), and so I" is a Thurston
obstruction. Note, however, that I is also an obstruction to the existence of a
branched covering G' combinatorially equivalent to F' which is expanding with
respect to some metric, since lifts of 4 must be shrunk by a definite factor.

Informally, one could decompose this example as follows (see Figure 1.3).

Let Sy(y) denote the component of S? — {y} containing the two critical
points, and let Sy(z) denote the component of S? — {v} containing the two
critical values. Regard Sy(r) as a subset of one copy of the sphere S, =
5% x {x}, and Sy(y) as a subset of a different copy of the sphere S, = S? x {y}.
Let S =8, U8, = 5% x {z,y}. Let Si(z) = Sp(x) C S, and let Sy (y) C S, be
the unique component of S? — F~!(v) contained in Sy(y). The original map
I’ determines branched covering maps S1(z) — Sp(y) and S;(y) — So(x).
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Fig. 1.1. A realizable mating. The filled-in Julia set of f(z) = z* — 1 is shown at top
right in black. The complement of the filled-in Julia set of g(z) is shown in black at
top left in a chart near infinity. The Julia set of the mating of f and g is the boundary
between the black and white region in the figure at the bottom.

To complete the decomposition, we must extend over the unshaded regions—
the complement of S;(x).S)(y). Note that the boundary components of
Si1(y),S1(xr) map by degree one onto their images. We must make a choice
of such an extension. To keep things as simple as possible, we extend by a
homeomorphism. The result is a continuous branched covering map

F:§—S
which interchanges the two spheres S;,S,. The “postcritical set”, defined in

the obvious way, still consists of four points: two period 2 critical points in
the sphere S, and two period 2 critical values in the sphere S,.
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Fig. 1.2. An obstructed mating. Postcritical points are indicated by solid dots and
critical points by crosses. The two overlapping crosses and dots correspond to the two
period 2 critical points.

Identify S? x {x,y} with C x {z,y} via a homeomorphism so that the
posteritical set of F is {0,00} x {x.y}. With a suitable generalization of the
notion of combinatorial equivalence to maps defined on unions of spheres (see
44.2), F is combinatorially equivalent to the map which sends (z,y) — (22, 2)
and (z,x) = (z,y).

1.3.3 An obstructed expanding Thurston map

ab
cd
integral coefficients. The linear map R? — R? defined by A preserves the
lattice Z? and thus descends to an endomorphism T4 : T? — T? of the torus

Here is a general construction. Let A = ( ) € GLy(R) be a matrix with
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‘ ‘
!
| S. S,

Fig. 1.3. Decomposition of the obstructed mating by cutting along the obstruction.
Postcritical points are indicated by solid dots and critical points by crosses. The two
overlapping crosses and dots correspond to the two period 2 critical points.

T? = R?/Z?. This endomorphism commutes with the involution ¢ : (x,y) —
(—r.—y). The quotient space T?/(v ~ ¢(v)) is topologically a sphere S? and
so Ty descends to a map Fy : 52 — S2. The set of critical values of Fy is the
image on the sphere of the set of points of order at most two on the torus.
Since the endomorphism on the torus must preserve this set of four points,
F4 is posteritically finite.
Ifeg A= (" )
i 02
inherited from the Euclidean metric on the torus. Let v be the curve which is
the image of the line x = 1/4. Then I' = {~} is a multicurve whose Thurston
matrix is (1/241/241/2) = (3/2) and is therefore an obstruction; see Figure
1.4 where the metric sphere is represented as a “rectangular pillowcase” i.e.
the union of two rectangles along their common boundary.

Using a similar decomposition process as in the previous example, we may
produce a map F : S?x {r,y} — S?x{r,y}. this time sending each component
to itself by a degree two branched covering.

Note that since the components of F~!(y) map by degree two, the exten-
sion over the complements of Sy(x),S;(y) is now more complicated. Again,
to keep things as simple as possible, we extend so that these complemen-
tary components, which are disks, map onto their images (again disks) by a
quadratic branched covering which is ramified at a single point (say at z,, z,)
which we arrange to be fixed points of F.

[t turns out that the resulting map F is combinatorially equivalent to the
map of C x {z, y} to itself given by (z,z) — (22 —2,2) and (z,y) — (2% —2,y)
(the points z,, z, are identified with the point oo € (6).

) then Fy is expanding with respect to the orbifold metric
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Fig. 1.4. An obstructed expanding map.



