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PREFACE

The present volume being the first one I have been editing, I would like to
take the opportunity to comment briefly on the needs and criteria a series such
as “Advances in Chemical Engineering” should meet today.

In the first preface of this series, almost 50 years ago, the founding editors
raised the issue of “the flood of information” created by “the practioners of the
chemical engineering art”. Communication both within and among scientific
communities defines the borders of such a community and constitutes a major
activity of any scientist, next to research as such of course. Complementary to the
very important oral presentations and discussions at seminars or conferences, the
scientific press has from the very beginning of print as medium been very in-
strumental in this: verba volent, scripta manent. The emergence of Information
and Communication Technology (ICT) in general and Internet in particular has
led to a tremendous increase of the amount of information that is available and
the frequency at which it is exchanged. I am convinced that this does not decrease
the added value of the so-called archival publications, on the contrary. This
holds even more so for a series offering a stage to scholars who, upon invitation,
are capable and willing to spend time to report in a broader context on their
personal contributions to a field. Any paper in “Advances in Chemical Engi-
neering” should allow to assess the state-of-the-art in a particular domain and to
develop a feeling of its further evolution without claiming to be exhaustive.
Going beyond the limits imposed by the “regular” scientific journals while not
imposing those typical of a text book is part of the success recipe I have in mind.

The subjects covered are not limited to the classical chemical engineering
disciplines. Contributions connecting chemical engineering to related scientific
fields, either providing a fundamental basis or introducing new concepts and
tools, are encouraged.

Of course applications of chemical engineering receive special attention. A
balance between well-developed areas such as process industry, transformation
of materials, energy and environmental issues and areas where applications of
chemical engineering are more recent or emerging is aimed at.

The theme of the present volume “Multiscale Analysis” has been introduced
about a decade ago and is now reaching a stage where a first balance can be
made and further research directions should be decided. Which are the dom-
inant and most successful concepts or methodologies? How do these relate to
our “classics””? How and where should they be applied next?

The selection of the contributions was among others guided by the concern
not to make the gap between the different scales too large. The reader will not
be confronted with quantum mechanics at one side of the spectrum nor with
chemical plants or even the environment on the other side. Bridging the gap
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between the phenomena occurring on the scale of a catalytic site and those on the
scale of a reactor or, even smaller, that of a polymer is sufficiently challenging
and allows, if not to answer, at least to address the above questions. Maintaining
a strong connection with reality, i.e. experimental data was another selection
criterion. Experimental validation remains the corner stone of any theoretical
development and very powerful experimental techniques are emerging.

First, a broad overview is provided by Dion Vlachos of the University of
Delaware. An important example of experimental techniques is discussed in
depth by Lynn Gladden and coworkers from the University of Cambridge.
Coming from the medical world, Magnetic Resonance techniques can now
provide even quantitative answers to problems our community is faced with.
The modeling issue is discussed further in the paper coming from the Prague
Institute of Chemical Technology and Imperial College, London. Finally, the
limitations of the classic reactor engineering models are outlined in a paper from
the University of Houston by contrasting the intuitive averaging over length
and timescales they are based upon with the rigorous Liapunov-Schmidt meth-
od. The authors have made an effort to provide examples when appropriate.
References to “a jar containing soup and meat balls” or to “the wall of a
champagne glass™ provocatively illustrate the broadness of the applications of
chemical engineering.

This makes me return to the first preface of this series and even to the very
first sentences of it. The danger of fragmentation of our field, some of us are so
afraid of, was presented as an opportunity: “The chemical engineer ministers to
an industry of far-flung interests. Its products range from soap to plutonium,
from gasoline to paper, from antibiotics to cement. It flourishes on change: new
products, processes, methods, and applications; new needs are created and
foreseen. Versatile men with breath of interest in science and commerce have
been demanded and the challenge of the field has found for it such men.” I leave
it up to the reader to appreciate the flavor of the “old” American, the list of
applications, the used gender. Most striking and still very much a topic of the
day, however, is the frontier spirit expressed by these lines. A spirit which can be
summarized by the device of a 16th century scholar, Pieter de Zuttere, who lived
and preached in the Low Countries and in particular in the city of Ghent:

“Cesse le vieux, s’il appert mieux” in old French, or in his and his contem-
porary Lowys Elsevier’s native tongue:

“Als beter can blycken, dat oude sal wijcken™.
Guy B. MARIN

GHENT, BELGIUM
March 2005
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Abstract

Multiscale simulation is an emerging scientific field that spans many
disciplines, including physics, chemistry, mathematics, statistics, chemical
engineering, mechanical engineering, and materials science. This review
paper first defines this new scientific field and outlines its objectives. An
overview of deterministic, continuum models and discrete, particle models
is then given. Among discrete, particle models, emphasis is placed on
Monte Carlo stochastic simulation methods in well-mixed and spatially
distributed systems. Next, a classification of multiscale methods is carried
out based on separation of length and time scales and the computational
and mathematical approach taken. Broadly speaking, hybrid simulation
and coarse graining or mesoscopic modeling are identified as two general
and complementary approaches of multiscale modeling. The former is
further classified into onion- and multigrid-type simulation depending on
length scales and the presence or not of gradients. Several approaches,
such as the net event, the probability weighted, the Poisson and binomial
t-leap, and the hybrid, are discussed for acceleration of stochastic sim-
ulation. In order to demonstrate the unifying principles of multiscale
simulation, examples from different areas are discussed, including systems
biology, materials growth and other reacting systems, fluids, and statistical
mechanics. While the classification is general and examples from other
scales and tools are touched upon, in this review emphasis is placed on
stochastic models, their coarse graining, and their integration with con-
tinuum deterministic models, i.e., on the coupling of mesoscopic and
macroscopic scales. The concept of hierarchical multiscale modeling is
discussed in some length. Finally, the importance of systems-level tools
such as sensitivity analysis, parameter estimation, optimization, control,
model reduction, and bifurcation in multiscale analysis is underscored.

l. Introduction

A decadal report recently issued by the National Research Council (NROQ),
entitled Beyond the Molecular Frontier: Challenges for Chemistry and Chemical
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Engineering (NRC, 2003a), advances 13 “Grand Challenges” for the field.
“Advancing Chemical Theory and Modeling” is viewed as one of the critical,
enabling technologies. Quoting from the report: “Chemistry covers an enor-
mous span of time and space from atoms and molecules to industrial-scale
processing. Advances in computing and modeling could help us connect phe-
nomena at the electronic and molecular scale to the commercial processing.” In
the information and communications NRC report and in recent roadmaps,
multiscale analysis is repeatedly identified as the emerging computational and
mathematical science that could enable design and control of complex engi-
neering systems (Thompson, 1999; NRC, 2003b).

The foundations of transport phenomena, reaction engineering, thermody-
namics, and nonlinear analysis, along with significant advances in numerical
analysis of differential equations at the continuum level and the increase in
computational power, have shaped for the most part the first engineering process
modeling paradigm of chemical sciences of the 20th century (the BSL paradigm
of continuum conservation equations and continuum constitutive relations
(Bird et al., 1960)). An outcome of this long-time effort has been the widespread
use of computational fluid dynamics (CF D) simulation that nowadays routinely
assists the design of many industrial processes.

The rapid growth in computational speed over the past decades has enabled a
molecular-based approach to product and process engineering. Molecular sim-
ulations such as molecular dynamics (MD) and Monte Carlo (MC) algorithms
have emerged as preeminent computational tools for science and engineering
research. Additional discrete particle simulations, such as Brownian dynamics
(BD), lattice Boltzmann (LB), direct simulation Monte Carlo (DSMC), and
dissipative particle dynamics (DPD), have attempted to bridge information
from the molecular to the mesoscopic scale, but often in a phenomenological
manner, as the rules of coarse graining are not fully established. At the other
end of the modeling spectrum, quantum mechanical (QM) calculations, such as
ab initio and density functional theory (DFT), in conjunction with transition
state theory (TST), have extended the realm of simulation to smaller scales by
providing electronic structure information such as potential energy surfaces
(PESs) and activation energies that are used in molecular simulations. The
advances in molecular and quantum mechanics theory and simulation have
established the second modeling paradigm (the molecular and quantum modeling
paradigm).

Multiscale simulation is emerging and will unquestionably become the third
modeling paradigm. The idea of multiscale modeling is straightforward: one
computes information at a smaller (finer) scale and passes it to a model at a
larger (coarser) scale (see Fig. 1) by leaving out degrees of freedom as one moves
from finer to coarser scales. Within this context, the most common goal of
multiscale modeling is to predict the macroscopic behavior of an engineering
process from first principles (upscaling or bottom-up approach). This approach
has its roots in the work of Newton, Hooke, Bernoulli, Einstein, Bodenstein,
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Length
Scale (m)
Tor= Mesoscopic
Upscaling or Theory/CGMC
10—l bottom-up KMC
| info traffic M Eqs
1071 DSMC, LB,
DED, etc.
Downscaling
Extended or top-down
i info traffic
107
10-10
| | | I | 1 7
10-14 10° 103 103
Time Scale (s)

FiG. 1. Schematic representation depicting scales and various simulators. Most multiscale work
has focused on the simplest, one-way information passing, usually from the finest to the coarsest
scale model. On the other hand, most processes exhibit strong coupling between scales or lack
separation of scales.

and others (Phillips, 2002; Raimondeau and Vlachos, 2002a) who left out many
degrees of freedom to propose continuum-based constitutive equations and
simple models for obtaining answers of interest. In recent times, this goal has
been served well, for example, by equilibrium statistical mechanics with QM-
based potentials and associated molecular (MD and MC) models. I envision an
equally important second goal of multiscale analysis, stemming from the
emerging areas of biotechnology, nanotechnology, and device miniaturization.
This goal is the ability to predict and control phenomena and devices with
resolution approaching nanoscopic scale while manipulating macroscopic (en-
gineering) scale variables such as flow rates, pressures, and temperature (down-
scaling or top-down approach). This manipulation may not happen with active
model-based control but instead by properly designing a system, using multi-
scale model-based information, to function desirably at the molecular level. This
issue is further discussed in the section on systems tasks. Reverse engineering is
yet a third potential goal of top-down information flow: given a desirable
property, it is desirable to predict suitable candidate materials (e.g., multicom-
ponent, multifunctional catalysts) and develop rational ways to synthesize them.
This last goal addresses product-driven engineering that is believed by many to
be the future of chemical sciences (Cussler and Wei, 2003). For the most part,
the last two goals have so far remained elusive but are the ones on which
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multiscale modeling and simulation would have the most impact in the next
decade.

Advances in analytical methods, such as scanning probe and high-resolution
transmission electron microscopy, now enable experiments with molecular-level
resolution. Furthermore, data from small ensembles of molecules or single en-
tities (e.g., a living cell) become more common. Effectively utilizing these and
related emerging tools and data to develop new products and processes will be
greatly facilitated by a complementary development in multiscale modeling that
can not only model experimentally observed phenomena, but also aid in the
prediction of new, as of yet, unproven products and processes.

Multiscale simulation is growing so rapidly that it emerges as a new mul-
tidisciplinary scientific field. Figure 2 summarizes the number of publications
over the past decade using the term “multiscale” and “multi-scale” in their title
only or in all title, abstract, and keywords. While the term multiscale means
different things in various fields, the explosion is clear. Two new journals,
Multiscale Modeling and Simulation, A SIAM Interdisciplinary Journal, and
the International Journal on Multiscale Computational Engineering (Begell
House Publishers, NY) started in 2003, point to the rapid evolution of this new
field. There have been many activities that speak to the same fact. Examples
include the recent issues 8 and 9 of the 59th volume of Chemical Engineering

1200 '/

[ Q Title, abstract, and keywords %

1000 ©  Tige ?

[ oy 2
800 7 f
= /

2 7 7

600 [ o % o
2 ol 7 7N
400 [ ' 77 /\
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FIG. 2. Sum of the number of publications over periods of two years containing the word “mul-
tiscale” and “multi-scale” in the title only or in the title, abstract, and keywords (found through the
Web of Science). An explosion in the number of publications is observed. However, this search is just
a measure since many of these papers do not really adhere with the definition of multiscale modeling
used here, and others, while truly multiscale, are not accounted for because “multiscale™ or “multi-
scale” is not present in their title, abstract, and keywords.
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Science in 2004 that have been dedicated to Complex Systems and Multi-scale
Methodology, the forth issue of the 29th volume in Computers in Chemical
Engineering on Multiscale Simulation published in 2005, the Springer-Verlag
IMA edited book on Dispersive Transport Equations and Multiscale Models
resulting from a related workshop, numerous workshops, and a topical con-
ference on Multiscale Analysis in the 2005 AIChE meeting, just to mention a
few.

Multiscale simulation builds on the foundations developed in the 20th cen-
tury of continuum, deterministic and discrete, particle-type models. It attempts
to seamlessly integrate models at various scales, extend existing tools to larger
length and time scales, and develop theoretical connections between tools over
multiple scales. It seems then appropriate to first provide a classification and
an overview of models at various scales before multiscale simulation is more
formally introduced and recent progress is reviewed. Since we have recently
given a review on multiscale simulation in catalysis and reaction engineering
(Raimondeau and Vlachos, 2002a), here a broader overview of multiscale sim-
ulation is given. The multidisciplinary nature of this emerging field makes this a
daunting task. For this reason, I have chosen to mainly focus on the areas of
systems biology and materials growth because these two fields are enticing an
increasing number of chemical engineers. Furthermore, by choosing two areas
one can clearly see unifying multiscale concepts that emerge across chemical
engineering. Some rather introductory examples from statistical mechanics and
reaction systems are also employed to illustrate key points and methods. Fi-
nally, I have tried to include references to some key mathematical pieces of work
and multiscale references from the physics, materials, and hydrodynamics com-
munities I am aware of with the hope of cross-fertilizing various disciplines
without necessarily being exhaustive in coverage (these areas deserve their own
review). For example, a recent, very good review from the mathematics com-
munity has just appeared after the submission of this manuscript that presents
some of the mathematical underpinnings of the algorithms and methods
touched upon below (Givon et al., 2004). While the discussed multiscale ap-
proach and issues are generic and apply to various models and scales, I have
Judiciously chosen to mainly focus on the MC method, among other atomistic
or mesoscopic models, and the integration of MC with deterministic, continuum
models as an example of stochastic/continuum hybrid multiscale models. This
naturally provides more coherence to the chapter. Some key references from
other types of multiscale models are also given.

Il. Deterministic, Continuum Models

Traditionally, modeling in chemical engineering has invoked continuum de-
scriptions of momentum, mass, and energy conservation (Bird et al., 1960)
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where substantial mathematical and computational contributions have been
made over the past decades. Here, the discussion is limited to a brief classi-
fication that introduces the necessary terminology used in the remainder of the

chapter.

A. HIERARCHY OF MODELS

Continuum modeling has often been based on algebraic equations (AEs),
ordinary differential equations (ODEs), partial differential equations (PDEy),
and differential-algebraic equations (DAEs). PDEs provide the most general
description at the continuum level. ODEs typically describe transient, well-
mixed systems, such as the concentrations and temperature in a batch reactor or
in a continuous stirred tank reactor (CSTR), or 1D steady state balances, such
as a plug flow reactor (PFR) model or an axial dispersion model. A distinction
of ODEs entails initial vs. boundary value problems depending on where the
conditions are imposed, namely, only at the entrance or at the entrance and exit,
respectively. The hierarchy of deterministic, continuum models is summarized in
Fig. 3a. Using concepts of dimensional analysis and symmetry, models toward
the bottom of the graph can be thought of as reductions or limits of higher
dimensionality models (found toward the top of the graph).
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Fic. 3. (a) Hierarchy of deterministic, continuum models. Dimensional analysis and symmetry are
powerful concepts in reducing the dimensionality of complex models. (b) Hierarchy of stochastic
models for chemically reacting well-mixed systems.



