Victor Larios
Félix F. Ramos
Herwig Unger (Eds.)

Advanced
Distributed Systems

Third International School and Symposium, ISSADS 2004
Guadalajara, Mexico, January 2004
Revised Selected Papers

LNCS 3061

Tp214ts

oL Victor Larios Félix F. Ramos
A»””H Herwig Unger (Eds.)
200 ﬁf

Advanced
Distributed Systems

Third International School and Symposium, ISSADS 2004
Guadalajara, Mexico, January 24-30, 2004
Revised Selected Papers

LA

E200404151

@_ Springer

Volume Editors

Victor Larios

Universidad de Guadalajara

CUCEA, Dept. Sistemas de Informacion

799, Periferico Norte, Edif.L.-308, Zappam, Jal., 45100, Mexico
E-mail: vlarios @acm.org

Félix F. Ramos

CINVESTAN

Prol. Lépez Mateos Sur 590 Guadalajara, J 45090 A.P. 31-438, Mexico
E-mail: framos @ gdl.cinvestav.mx

Herwig Unger

Universitit Rostock

Fachbereich Informatik, Albert-Einstein-Str.23, 18051 Rostock, Germany
E-mail: hunger@informatik.uni-rostock.de

Library of Congress Control Number: 2004107500

CR Subject Classification (1998): C.2.4,1.2.11,D.2.12,D.1.3,D.4, H.3, H.4

ISSN 0302-9743
ISBN 3-540-22172-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by DA-TeX Gerd Blumenstein
Printed on acid-free paper SPIN: 11011446 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3061

Preface

This volume contains the accepted papers from the 3rd International School
and Symposium on Advanced Distributed Systems held in Guadalajara, Mexico,
January 24-30, 2004. This event was organized by the teams made up of members
of CINVESTAV Guadalajara, CUCEI, the Computer Science Department of
the Centre of Research and Advances Studies at the CUCEA campus of the
University of Guadalajara, Mexico, the University of Rostock, Germany and
ITESO, Guadalajara. The ISSADS symposium provides a forum for scientists
and people from industry to discuss the progress of applications and theory of
distributed systems. This year there were over 300 participants from 3 continents,
among which about 20 percent came from industry.

The conference program consisted of 25 accepted papers out of 46 submissions
and covered several aspects of distributed systems from hardware and system
level up to different applications. These papers were selected by a peer review
process, in which each paper was evaluated by at least three members of the
international program committee.

In addition, the three invited speakers, Adolfo Guzman Arenas, Yakup Parker
and Joaquin Vila, presented interesting overviews to current development and
research directions in distributed systems. Furthermore, eight tutorials and four
industrial forums from IBM, INTEL, HP and SUN enabled the participants to
extend their knowledge in selected areas. A panel, which was organized by a
team composed of researchers from the Universidad de Guadalajara and focused
on traffic control and simulation, also demonstrated the practical application of
recent research in distributed systems to the problems of Guadalajara.

At this moment, we would like to say thank you to all the members of the
program and organizing committees as well as their teams, and we would like
to show our particular gratitude to all those who submitted their papers to
ISSADS 2004. Furthermore, we would like to acknowledge the local support from
the Council of Science and Research of Jalisco, Mexico and the Jalisco Software
Industry. Special thanks are also given to Yuniva Gonzalez and Cynthia Guerrero
for their organizational support. We hope that all the participants enjoyed their
stay in Mexico and benefited from fruitful discussions and a good time. We look
forward to more new participants at the next ISSADS conference to be held
again in Guadalajara, Mexico, in January 2005.

May 2004 Félix F. Ramos C.
Herwig Unger
Victor Larios

VI Preface

Program Committee

Chair Félix Francisco Ramos Corchado, CINVESTAV Guadalajara
Co-chair Victor Manuel Larios Rosillo, CUCEA, Universidad de Guadalajara
Editorial chair Herwig Unger, Rostock University, Germany

Scientific Committee

Anbulagan
F. Arbad

G. Babin
H.R. Barradas
J.P. Barthés
N. Bennani
T. Bohme

P. Boulanger
M. Bui

L. Chen

M. Diaz

D. Donsez
K. Drira
C.V. Estivill

Organization

A. Gelbukh
A.A. Guzman
G. Juanole
H. Kihl

J.-L. Koning
P. Kropf

S. Lecomte
A. Lépez

R. Mandiau
E. Moreira

S. Murugesan
A. N Tchernykh
Y. Paker
E.P. Cortéz

P. de Saqui Sannes
R.M. Pires

R. Rajkumar
F. Ren

G. Romén
E.E. Scalabrin
S. Tazi

H. Unger

J. Vila

T. Villemur

P. Young-Hwan
A. Zekl

Public Relations Carolina Mata, CINVESTAV Guadalajara
Logistics Cynthia Guerrero, CINVESTAV Guadalajara
Logistics Jorge Herndndez, CINVESTAV Guadalajara
Logistics Yuniva Gonzdlez, CINVESTAV Guadalajara

Lecture Notes in Computer Science

For information about Vols. 1-3028

please contact your bookseller or Springer-Verlag

Vol. 3139: F. Iida, R. Pfeifer, L. Steels, Y. Kuniyoshi (Eds.),
Embodied Artificial Intelligence. IX, 331 pages. 2004.
(Subseries LNAI).

Vol. 3133: A.D. Pimentel, S. Vassiliadis (Eds.), Computer
Systems, Architectures, Modeling, and Simulation. XIII,
562 pages. 2004.

Vol. 3125: D. Kozen (Ed.), Mathematics of Program Con-
struction. X, 401 pages. 2004.

Vol. 3123: A. Belz, R. Evans, P. Piwek (Eds.), Generating
Language. X, 219 pages. 2004. (Subseries LNAI).

Vol. 3120: J. Shawe-Taylor, Y. Singer (Eds.), Learning
Theory. X, 648 pages. 2004. (Subseries LNAI).

Vol. 3118: K. Miesenberger, J. Klaus, W. Zagler, D. Burger
(Eds.), Computer Helping People with Special Needs.
XXIII, 1191 pages. 2004.

Vol. 3116: C. Rattray, S. Maharaj, C. Shankland (Eds.), Al-
gebraic Methodology and Software Technology. XI, 569
pages. 2004.

Vol. 3114: R. Alur, D.A. Peled (Eds.), Computer Aided
Verification. XII, 536 pages. 2004.

Vol. 3113: J. Karhumaiki, H. Maurer, G. Paun, G. Rozen-
berg (Eds.), Theory Is Forever. X, 283 pages. 2004.

Vol. 3112: H. Williams, L. MacKinnon (Eds.), New Hori-
zons in Information Management. XII, 265 pages. 2004.

Vol. 3111: T. Hagerup, J. Katajainen (Eds.), Algorithm
Theory - SWAT 2004. X1, 506 pages. 2004.

Vol. 3110: A. Juels (Ed.), Financial Cryptography. XI, 281
pages. 2004.

Vol. 3109: S.C. Sahinalp, S. Muthukrishnan, U. Dogrusoz
(Eds.), Combinatorial Pattern Matching. XII, 486 pages.
2004.

Vol. 3108: H. Wang, J. Pieprzyk, V. Varadharajan (Eds.),
Information Security and Privacy. XII, 494 pages. 2004.
Vol. 3107: J. Bosch, C. Krueger (Eds.), Software Reuse:
Methods, Techniques and Tools. XI, 339 pages. 2004.
Vol. 3105: S. Gaobel, U. Spierling, A. Hoffmann, I. Iurgel,
O. Schneider, J. Dechau, A. Feix (Eds.), Technologies for
Interactive Digital Storytelling and Entertainment. XVI,
304 pages. 2004.

Vol. 3104: R. Kralovic, O. Sykora (Eds.), Structural In-
formation and Communication Complexity. X, 303 pages.
2004.

Vol. 3103: K. Deb (Ed.), Genetic and Evolutionary Com-
putation - GECCO 2004. XLIX, 1439 pages. 2004.

Vol. 3102: K. Deb (Ed.), Genetic and Evolutionary Com-
putation - GECCO 2004. L, 1445 pages. 2004.

Vol. 3101: M. Masoodian, S. Jones, B. Rogers (Eds.),
Computer Human Interaction. XIV, 694 pages. 2004.

Vol. 3100: J.E. Peters, A. Skowron, J.W. Grzymata-Busse,
B. Kostek, R.W. Swiniarski, M.S. Szczuka (Eds.), Trans-
actions on Rough Sets I. X, 405 pages. 2004.

Vol. 3099: J. Cortadella, W. Reisig (Eds.), Applications
and Theory of Petri Nets 2004. XI, 505 pages. 2004.
Vol. 3098: J. Desel, W. Reisig, G. Rozenberg (Eds.), Lec-
tures on Concurrency and Petri Nets. VIII, 849 pages.
2004.

Vol. 3097: D. Basin, M. Rusinowitch (Eds.), Automated
Reasoning. X1I, 493 pages. 2004. (Subseries LNAI).
Vol. 3096: G. Melnik, H. Holz (Eds.), Advances in Learn-
ing Software Organizations. X, 173 pages. 2004.

Vol. 3094: A. Niirnberger, M. Detyniecki (Eds.), Adaptive
Multimedia Retrieval. VIII, 229 pages. 2004.

Vol. 3093: S.K. Katsikas, S. Gritzalis, J. Lopez (Eds.),
Public Key Infrastructure. XIII, 380 pages. 2004.

Vol. 3092: J. Eckstein, H. Baumeister (Eds.), Extreme Pro-
gramming and Agile Processes in Software Engineering.
XVI, 358 pages. 2004.

Vol. 3091: V. van Qostrom (Ed.), Rewriting Techniques
and Applications. X, 313 pages. 2004.

Vol. 3089: M. Jakobsson, M. Yung, J. Zhou (Eds.), Applied
Cryptography and Network Security. XIV, 510 pages.
2004.

Vol. 3086: M. Odersky (Ed.), ECOOP 2004 — Object-
Oriented Programming. XIII, 611 pages. 2004.

Vol. 3085: S. Berardi, M. Coppo, F. Damiani (Eds.), Types
for Proofs and Programs. X, 409 pages. 2004.

Vol. 3084: A. Persson, J. Stirna (Eds.), Advanced Infor-
mation Systems Engineering. XIV, 596 pages. 2004.

Vol. 3083: W. Emmerich, A.L. Wolf (Eds.), Component
Deployment. X, 249 pages. 2004.

Vol. 3080: J. Desel, B. Pernici, M. Weske (Eds.), Business
Process Management. X, 307 pages. 2004.

Vol. 3079: Z. Mammeri, P. Lorenz (Eds.), High Speed
Networks and Multimedia Communications. XVIII, 1103
pages. 2004.

Vol. 3078: S. Cotin, D.N. Metaxas (Eds.), Medical Simu-
lation. XVI, 296 pages. 2004.

Vol. 3077: E. Roli, J. Kittler, T. Windeatt (Eds.), Multiple
Classifier Systems. XII, 386 pages. 2004.

Vol. 3076: D. Buell (Ed.), Algorithmic-Number Theory.
X1, 451 pages. 2004. —

Vol. 3074: B. Kuijpers, P. Revesz (Eds.), Constraint
Databases and Applications. XII, 181 pages. 2004.

Vol. 3073: H. Chen, R. Moore, D.D. Zeng, J. Leavitt

(Eds.), Intelligence and Security Informatics. XV, 536
pages. 2004.

Vol. 3072: D. Zhang, A K. Jain (Eds.), Biometric Authen-
tication. XVII, 800 pages. 2004.

Vol. 3071: A. Omicini, P. Petta, J. Pitt (Eds.), Engineer-
ing Societies in the Agents World. XIII, 409 pages. 2004.
(Subseries LNAI).

Vol. 3070: L. Rutkowski, J. Siekmann, R. Tadeusiewicz,
L.A. Zadeh (Eds.), Artificial Intelligence and Soft Com-
puting - ICAISC 2004. XXV, 1208 pages. 2004. (Sub-
series LNAI).

Vol. 3068: E. André, L. Dybkjer, W. Minker, P. Heis-
terkamp (Eds.), Affective Dialogue Systems. XII, 324
pages. 2004. (Subseries LNAI).

Vol. 3067: M. Dastani, J. Dix, A. El Fallah-Seghrouchni
(Eds.), Programming Multi-Agent Systems. X, 221 pages.
2004. (Subseries LNAI).

Vol. 3066: S. Tsumoto, R. Stowiriski, J. Komorowski, J.W.
Grzymata-Busse (Eds.), Rough Sets and Current Trends
in Computing. XX, 853 pages. 2004. (Subseries LNAI).

Vol. 3065: A. Lomuscio, D. Nute (Eds.), Deontic Logic in
Computer Science. X, 275 pages. 2004. (Subseries LNAI).

Vol. 3064: D. Bienstock, G. Nemhauser (Eds.), Integer
Programming and Combinatorial Optimization. XI, 445
pages. 2004.

Vol. 3063: A. Llamosf, A. Strohmeier (Eds.), Reliable
Software Technologies - Ada-Europe 2004. XIII, 333
pages. 2004.

Vol. 3062: J.L. Pfaltz, M. Nagl, B. Bohlen (Eds.), Applica-
tions of Graph Transformations with Industrial Relevance.
XV, 500 pages. 2004.

Vol. 3061: EF. Ramos, H. Unger, V. Larios (Eds.), Ad-
vanced Distributed Systems. VIII, 285 pages. 2004.

Vol. 3060: A.Y. Tawfik, S.D. Goodwin (Eds.), Advances in
Artificial Intelligence. XIII, 582 pages. 2004. (Subseries
LNAI).

Vol. 3059: C.C. Ribeiro, S.L. Martins (Eds.), Experimental
and Efficient Algorithms. X, 586 pages. 2004.

Vol. 3058: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 233
pages. 2004.

Vol. 3057: B. Jayaraman (Ed.), Practical Aspects of
Declarative Languages. VIII, 255 pages. 2004.

Vol. 3056: H. Dai, R. Srikant, C. Zhang (Eds.), Advances in
Knowledge Discovery and Data Mining. XIX, 713 pages.
2004. (Subseries LNAI).

Vol. 3055: H. Christiansen, M.-S. Hacid, T. Andreasen,
H.L. Larsen (Eds.), Flexible Query Answering Systems.
X, 500 pages. 2004. (Subseries LNAI).

Vol. 3054: 1. Crkovic, J.A. Stafford, H.W. Schmidt, K.
Wallnau (Eds.), Component-Based Software Engineering.
XI, 311 pages. 2004.

Vol. 3053: C. Bussler, J. Davies, D. Fensel, R. Studer
(Eds.), The Semantic Web: Research and Applications.
XII1, 490 pages. 2004.

Vol. 3052: W. Zimmermann, B. Thalheim (Eds.), Abstract

State Machines 2004. Advances in Theory and Practice.
XII, 235 pages. 2004.

Vol. 3051: R. Berghammer, B. Méller, G. Struth (Eds.),
Relational and Kleene-Algebraic Methods in Computer
Science. X, 279 pages. 2004.

Vol. 3050: J. Domingo-Ferrer, V. Torra (Eds.), Privacy in
Statistical Databases. IX, 367 pages. 2004.

Vol. 3049: M. Bruynooghe, K.-K. Lau (Eds.), Program
Development in Computational Logic. VIII, 539 pages.
2004.

Vol. 3047: F. Oquendo, B. Warboys, R. Morrison (Eds.),
Software Architecture. X, 279 pages. 2004.

Vol. 3046: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1016 pages. 2004.

Vol. 3045: A. Lagan3, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1040 pages. 2004.

Vol. 3044: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1140 pages. 2004.

Vol. 3043: A. Lagana, M.L, Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1180 pages. 2004.

Vol. 3042: N. Mitrou, K. Kontovasilis, G.N. Rouskas, I.
Iliadis, L. Merakos (Eds.), NETWORKING 2004, Net-
working Technologies, Services, and Protocols; Perfor-
mance of Computer and Communication Networks; Mo-
bile and Wireless Communications. XXXIII, 1519 pages.
2004. .

Vol. 3040: R. Conejo, M. Urretavizcaya, J.-L. Pérez-de-
la-Cruz (Eds.), Current Topics in Artificial Intelligence.
X1V, 689 pages. 2004. (Subseries LNAI).

Vol. 3039: M. Bubak, G.D.v. Albada, PM. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
1271 pages. 2004.

Vol. 3038: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
1311 pages. 2004.

Vol. 3037: M. Bubak, G.D.v. Albada, PM. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
745 pages. 2004.

Vol. 3036: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
713 pages. 2004.

Vol. 3035: M.A. Wimmer (Ed.), Knowledge Management
in Electronic Government. XII, 326 pages. 2004. (Sub-
series LNAI).

Vol. 3034: J. Favela, E. Menasalvas, E. Ch4vez (Eds.), Ad-
vances in Web Intelligence. XIII, 227 pages. 2004. (Sub-
series LNAI).

Vol. 3033: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.),
Grid and Cooperative Computing. XXXVIII, 1076 pages.
2004.

Vol. 3032: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.), Grid
and Cooperative Computing. XXXVII, 1112 pages. 2004.

Vol. 3031: A. Butz, A. Kriiger, P. Olivier (Eds.), Smart
Graphics. X, 165 pages. 2004.

Vol. 3030: P. Giorgini, B. Henderson-Sellers, M. Winikoff
(Eds.), Agent-Oriented Information Systems. XIV, 207
pages. 2004. (Subseries LNAI).

Vol. 3029: B. Orchard, C. Yang, M. Ali (Eds.), Innovations
in Applied Artificial Intelligence. XXI, 1272 pages. 2004.
(Subseries LNAI).

Table of Contents

International School and Symposium
on Advanced Distributed Systems

Myths, Beliefs and Superstitions about the Quality of Software
and of Its Teaching
Adolfo Guzman Arenas 1

Enhancing a Telerobotics Java Tool with Augmented Reality
Nancy Rodriguez, Luis Jose Pulido, and Jean-Pierre Jessel 9

VIBES: Bringing Autonomy to Virtual Characters
Stéphane Sanchez, Hervé Luga, Yves Duthen, and Olivier Balet............ 19

An Overview of the ViIrRTUOSI Toolkit
Alcides Calsavara, Agnaldo K. Noda, and Juarez da Costa Cesar Filho. 31

Assessing the Impact of Rapid Serial Visual Presentation (RSVP):
A Reading Technique
Barbara Beccue and Joaquin Vila0 42

An Open Multiagent Architecture to Improve Reliability

and Adaptability of Systems

Edson Scalabrin, Deborah Carvalho, Elaini Angelotti, Hilton de Azevedo,

and Milton Ramos...... ... oo 54

Toward a Generic MAS ,Test Bed
Juan Salvador Gémez Alvarez, Gerardo Chavarin Rodriguez,
and Victor Hugo Zaldivar Carrillo i, 67

State Controlled Execution for Agent-Object Hybrid Languages
Ivan Romero Hernandez and Jean-Luc Koning............................. 78

Cognitive Agents and Paraconsistent Logic
FElaini Simoni Angelotti and Edson Emilio Scalabrin 91

A Multiagent Infrastructure for Self-organized Physical Embodied Systems:
An Application to Wireless Communication Management
Jean-Paul Jamont and Michel Occello 105

Tlachtli: A Framework for Soccer Agents Based on GeDa-3D
Francisco Ocegueda, Roberto Sdnchez, and Félizx Ramos................... 118

Evaluating Location Dependent Queries Using ISLANDS
Marie Thilliez and Thierry Delot e, 125

VIII Table of Contents

Conceptual Information Retrieval)
Emerson L. dos Santos, Fabiano M. Hasegawa, Brdulio C. Avila,
and Fabricio Enembreckco i

Semantic Search Engines
Alcides Calsavara and Glauco Schmidt........... i ..

The Internal-Local-Remote Dependency Model for Generic Coordination
in Distributed Collaboration Sessions
José Martin Molina Espinosa, Jean Fanchon, and Khalil Drira

About the Value of Virtual Communities in P2P Networks
German Sakaryan, Herwig Unger, and Ulrike Lechner

Search in Communities: An Approach Derived from the Physic Analogue
of Thermal Fields
Herwig Unger and Markus Wulff ...,

A Component-Based Design Approach
for Collaborative Distributed Systems
Francisco Moo-Mena and Khalil Drira ...,

Architecture for Locating Mobile CORBA Objects
in Wireless Mobile Environment
Mayank Mishra. o e

Integration of Load Balancing into a Parallel Evolutionary Algorithm
Miguel Castro, Graciela Romdn, Jorge Buenabad, Alma Martinez,
and John Goddardo e

Random Distributed Self-stabilizing Structures Maintenance
Thibault Bernard, Alain Bui, and Olivier Flauzac.........................

A New On-Line Scheduling Algorithm for Distributed Real-Time System
Mourad Hakem and Franck Butelle ...,

Facing Combinatory Explosion in NAC Networks
Jéréme Leboeuf Pasquierc.oouiue ettt

Multiple Correspondences and Log-linear Adjustment in E-commerce
Maria Beatriz Berndbe Loranca and Luis Antonio Olsina Santos..........

A Distributed Digital Text Accessing and Acquisition System
Adolfo Guzmdn Arenas and Victor-Polo de Gyves

Author Index ...

Myths, Beliefs and Superstitions
about the Quality of Software and of Its Teaching

Adolfo Guzman Arenas

Centro de Investigacion en Computacion (CIC)
Instituto Politecnico Nacional, Mexico
a.guzman@acm.org

Abstract. It is a surprise to see how, as years go by, two activities so germane
to our discipline, (1) the creation of quality software, and (2) the quality
teaching of software construction, and more generally of Computer Science, are
surrounded or covered, little by little, by beliefs, attitudes, “schools of thought,”
superstitions and fetishes rarely seen in a scientific endeavor. Each day, more
people question them less frequently, so that they become “everyday truths” or
“standards to observe and demand.” I have the feeling that I am minority in this
wave of believers and beliefs, and that my viewpoints are highly unpopular. I
dare to express them because I fail to see enough faults in my reasoning and
reasons, and because perhaps there exist other “believers” not so convinced
about these viewpoints, so that, perhaps, we will discover that “the imperator
had no clothes, he was naked.”

1 Myths and Beliefs about the Production of Quality Software

This section lists several “general truths,” labeled A, B..., G concerning quality of
software, and tries to ascertain whether they are reasonable assertions (“facts,”
sustainable opinions) or myths.

1.1 About Measuring Software Quality

A. It Is Possible to Measure the Main Attributes that Characterize Good Quality
Software. The idea here is that software quality can be characterized by certain
attributes: reliability, flexibility, robustness, comprehension, adaptability, modularity,
complexity, portability, usability, reuse, efficiency... and that it is possible to measure
each of these, and therefore, characterize or measure the quality of the software under
examination. To ascertain whether point A is a fact or a myth, let us analyze three
facets of it.

1) It is possible to measure above attributes subjectively, asking their opinion to
people who have used the software in question.

Comment 1. Opinions by Experienced Users Are Reliable. That is, (1) is not a myth,
but something real. It is easy to agree that a program can be characterized by above
attributes (or similar list). Also, it is convincing that the opinions of a group of

F. F. Ramos, H. Unger, V. Larios (Eds.): ISSADS 2004, LNCS 3061, pp. 1-8, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 Adolfo Guzman Arenas

qualified users respect to the quality, ergonomics, portability... of a given software
are reliable and worth to be taken into account (subjective, but reliable opinions).

2) Another practice is to try to measure above attributes objectively, by measuring
surrogate attributes if the real attribute is difficult to measure [Myth B below].

Comment 2. Measuring Surrogate Attributes. To measure the height of a water tank
when one wishes to measure its volume, is risky. Objective (accurate) measurements
of surrogate attributes may be possible, but to think that these measures are
proportional to the real attribute, is risky. “If you can not measure beauty of a face,
measure the length of the nose, the color of eyes...” If you can not measure the
complexity of a program, measure the degree of nesting in its formulas and equations,
and say that they are directly related. More in my comments to Myth B.

3) Finally, instead of measuring the quality of a piece of software, go ahead and
measure the quality of the manufacturing process of such software: if the building
process has quality, no doubt the resulting software should have quality, too
(Discussed below as Myth C).

Comment 3. To Measure the Process, instead of Measuring the Product. In old
disciplines (manufacturing of steel hinges, leather production, wine production,
cooking...) where there are hundred of years of experience, and which are based in
established disciplines (Physics, Chemistry...), it is possible to design a process that
guarantees the quality of the product. A process to produce good leather, let us say.
And it is also possible to (objectively) measure the quality of the resulting product.
And to adapt the process, modifying it to fix errors (deviations) in the product quality:
for instance, to obtain a more elastic leather. Our problem is that it is not possible to
do that with software. We do not know what processes are good to produce good
quality software. We do not know what part of the process to change in order, let us
say, to produce software with less complexity, or with greater portability. More in my
comments to Myth C.

B. There Exists a Reliable Measurement for Each Attribute. For each attribute to
be measured, there exists a reliable, objective measurement that can be carried out.
The idea is that, if the original attribute is difficult to measure,! measure another
attribute, correlated to the first, and report the (second) measurement as proportional
or a substitute for the measure of the original attribute.

1. Reliability (reliable software, few errors): measure instead the number of error
messages in the code. The more, the less errors that software has.

2. Flexibility (malleability to different usage, to different environments) or
adaptability: measure instead the number of standards to which that software
adheres.

3. Robustness (few drastic failures, the system rarely goes down): measure through
tests and long use (Subjective measurement).

4. Comprehension (ability to understand what the system does): measure instead the
extent of comments in source code, and the size of its manuals.

! Or we do not know how to measure it.

Myths, Beliefs and Superstitions about the Quality of Software and of Its Teaching 3

5. The size of a program is measured in bytes, the space it occupies in memory
(This measurement has no objection, we measure what we want to measure).

6. Speed of execution is measured in seconds (This measurement has no objection,
we measure what we want to measure).

7. Modularity: count the number of source modules forming it.

8. Program complexity (how difficult it is to understand the code): measure instead
the level of nesting in expressions and commands (“cyclomatic complexity”).

9. Portability (how easy it is to port a software to a different operating system): ask
users that have done these portings (Subjective measurement).

10. Program usability (it is high when the program brings large added value to our
work. “It is essential to have it.”): measure the percentage of our needs that this
program covers (Subjective measurement).

11. Program reuse: measure how many times (parts of) this program have been used
in other software development projects. (Objective measurement, but only
obtained in hindsight).

12. Ease of use (ergonomics) characterizes programs that are easy to learn, tailored to
our intuitive ways to carry out certain tasks. Measure instead the quantity of
screens that interact with the user, and their sophistication.

Comment 4. Measuring Surrogate Attributes. These “surrogate measurements” can
produce irrelevant figures for the quality that we are really trying to measure. For
instance, the complexity of a program will be difficult to measure using point 8, for
languages that use no parenthesis for nesting. For instance, it is not clear that a
software with long manuals is easier to comprehend (point 4). To measure the
temperature of a body when one wants to measure the amount of heat (calories) in it,
is incorrect and will produce false results. A very hot needle has less heat that a
lukewarm anvil.

Comment 5. 1t is true that in the production of other goods, say iron hinges, is easy to
list the qualities that a good hinge must possess: hardness, resistance to corrosion...
And it is also easy to objectively measure those qualities. Why is it difficult, then, to
measure the equivalent quantities about software? Because hinges have been
produced before Pharaohnic times, humankind has accumulated experience on this,
and because its manufacture is based on Physics, which is a consolidated science
more than 2,000 years old. Physics has defined units (mass, hardness, tensile
strength...) capable of objective measurement. More over, Physics often gives us
equations (f = ma) that these measurements need to obey. In contrast, Computer
Science has existed only for 60 years, and thus almost all its dimensions (reliability,
ease of use...) are not susceptible (yet) of objective measurements. Computer Science
is not a science yet, it is an art or a craft.? Nevertheless, it is tempting to apply to
software characterization (about its quality, say), methods that belong and are useful
in these more mature disciplines, but that are not (yet) applicable in our emerging
science. We are not aware that methods that work in leather production, do not work

2 Remember the title of the book “The Art of Computer Programming” of Donald C. Knuth.

In addition, we should not be afraid that our science begins as an art or a craft. Visualize
Medicine when it was only 60 years old: properties of lemon tea were just being discovered.
And physicians talked for a long time of fluids, effluvia, bad air, and witchcraft. With time,
our discipline will become a science.

4 Adolfo Guzman Arenas

in software creation. Indeed, it is useful at times to talk of software creation, not of
software production, to emphasize the fact that software building is an art, dominated
by inspiration, good luck... (see Comment 7).

1.2 Measuring the Process instead of Measuring the Product

An indirect manner to ascertain the quality of a piece of software, is to review the
quality of the process producing it.

C. Measuring the Quality of the Process, Not the Product Quality. Instead of
measuring the quality of the software product, let us measure the quality of its
construction process. To have a good process implies to produce quality software.

Comment 6. It is tempting to claim that a “good” process produces good quality
software, and therefore, deviations of programmers with respect to the given process
should be measured and corrected. The problem here is that it is not possible to say
which process will produce good quality software. For instance, if I want to produce
portable software, what process should I introduce, versus if what I want to emphasize
is ease of use? Thus, the definition of the process becomes very subjective, an act of
faith. Processes are used that sound and look reasonable, or that have been used in
other places with some success. Or that are given by some standard or international
committee. “If so many people use them, they must be good.” We need to recognize
that our discipline is not (yet) a science nor an Engineering discipline, where one can
design a process that guarantees certain properties in the resulting product, much in
the same manner that the time and temperature of an oven can be selected to produce
hinges of certain strength. Instead, our discipline is more of an art or a craft, where
inspiration counts, “to see how others do it,” “to follow the school of Prof. Wirth,” to
follow certain rites and traditions or tics that a programmer copied (perhaps
unconsciously) from his teacher.

Comment 7. A more contrasting manner to see that certain measurement processes are
not applicable to certain areas, is to examine an art, such as Painting or Symphony
Composition. Following the rules of the hard disciplines (manufacturing of hinges),
we would first characterize the quality symphonies as those having sonority, cadence,
rhythm... Here, measuring those qualities becomes (as in software) subjective. Then,
we would establish the rules that govern the process of fabrication of symphonies (by
observing or asking notable composers, say Sergei Prokoffiev): the pen needs to have
enough ink, use thick point; the paper must have a brightness no less than x, its
thickness must be at least z; it must be placed on the desk forming an angle not bigger
than 35 degrees. Light shall come from the left shoulder. Certainly, these rules will
not hurt. But there is no guarantee that anybody that follows them will produce great
quality symphonies, even if the very same rules in hands of Prokoffiev produce
excellent results, over and over.

D. If You Have a Controlled Process, You Will Produce Good Quality Software.
It is easy to know when you have a “good” (reasonable) process. It is easy to design a
“good” process to produce software.

Myths, Beliefs and Superstitions about the Quality of Software and of Its Teaching 5

Comment 8. On the other hand, it is not really known which processes will produce
easy-to-use software, which other processes will produce portable software, or
software with good real-time properties, etc. The “process design” bears thus little
relation to the goal: to produce a software product with this and that features. The
problem resembles that of hospital surgeons in the pre-Pasteurian period, when
bacteria were not yet discovered. Many people who underwent surgery died, full of
infection and pus, without anybody knowing why. Of course, it was easy to measure
the quality of a product of a surgery process: “birth-giving woman died of
septicemia.” Therefore, processes were designed to make sure that patients with
surgery would not die: when coming to work, surgeons should pray to Saint Diego.
Then, hang from your neck a chain of garlic bulbs. Then, wash your hands. You shall
not commit surgery during days with nights having full moon... These rules certainly
did not hurt (did not produce worse results), but they were not very related to the
quality of the final results. Once bacteria were discovered, the rules were simplified,
fine tuned and complemented with others: “wash your knives,” “disinfect your
hands.” It is my impression that, in software creation, we are in a pre-Luis Pasteur
epoch, and that we invent rules and processes “to have one at hand,” but that the
results (the quality of the resulting software) of these processes have little to do with
the invented process, and with its fulfillment or lack thereof.

E. It Is Necessary to Create “Quality Champions,” Quality Committees, and
other human organizations whose goal is “to promote quality (of software).”
Generally, a committee of this type (1) generates norms and rules saying how the
construction of software is to be handled (regulations about the process; they define
the process), including formats that certain intermediate and final documents
(manuals, say) shall have, and (2) it observes if the programming team follows the
rules (1), seeking to correct deviations.

Comment 9. These committees, since they do not know for sure neither how to
measure the quality of the product (Myths A and B) nor how to alter the fabrication
process if certain output attributes are unacceptable (Myth D), end up becoming
hindrances and stereotyped bureaucracies. What they can demand (and they do) from
the programming and design team is adherence to the process invented by said
committee (or copied from an international organization). If they adhere and follow
the process, “that is good,” and (by faith) “good quality software shall be the result.”
If the team deviates, that is bad; offenders should be punished and be blamed for the
bad quality of the results. This is equivalent to have, in a pre-Pasteurian hospital (see
Comment 8) a committee that, watching that this week more patients died of general
infection than in the previous week, strengthens its efforts and detects surgeons that
did not pray to Saint Diego, while others hanged from their necks garlic bulbs that
were not fresh. Let us reprehend these offenders, and less patients shall die.

F. Attitude Matters. The right mind-set towards quality shall permeate and
impregnate each coder. The designer or programmer must be constantly thinking
about quality, must have faith in that he will produce good quality software; he shall
watch that the quality of his works be above a (high) minimum.

6 Adolfo Guzman Arenas

Comment 10. This is an act of faith, that certainly will not hurt. But it helps little.
Software confection should not be based on faith or beliefs. Certainly, it helps
somewhat that a programmer says each morning “today I am going to produce high
quality software, I am sure of that,” much in the same manner as a pre-Pasteurian
surgeon said “Today, no one of my patients undergoing surgery will die; today, no
one of my patients undergoing surgery will die.” With respect to the idea that a
programmer “‘shall watch the quality of his production,” this is commendable, but it is
certainly difficult, since it is difficult to measure sofiware quality, even if the person
measuring is the software builder.

1.3 The Myth of Standards

G. Adhesion to Standards Means High Quality Software. “If we do software
construction following the rules dictated by a standards organization, we will be
producing good quality software.” “Following software construction standards
ensures the quality of the process and the quality of the resulting software.” That is to
say, of the many processes that we could follow when creating software, let us use
one that is part of a norm or standard (preferably, an international one), or let us
follow the process used by a company that produces good quality software (Oracle,

say).

Comment 11. Nothing wrong can be perceived in this practice. It is as if the surgeons
of a low quality hospital (of Comment 8) decide to copy the surgery process of The
Hospital of the Holy Virgin Mary, which has low post-surgery mortality. Or if I want
to use Prokoffiev's “rules for composing good symphonies” (Comment 7). No evil
will come out of this. Nevertheless, subjectivity and the scanty relation between these
“preferred” procedures and the quality of the resulting software must be clear, as
Comment 8 explains.

2 Myths and Beliefs about the Quality of Teaching in Computer
Science

We now examine how quality in Computer Science schools is measured.

2.1 It Is Enough to Measure the Product

It seems very reasonable and obvious (but let us examine it) to measure the quality of
the product, in order to ascertain its quality.

H. Measure the Product and See if It Is of Good Quality. If I make a test or
examination to two young undergraduate alumni of different Computer Science
schools, and one of then knows more computer science than the other, certainly the
person knowing more is of better quality. Example: the organism “Ceneval“ in
Mexico, who does just that.

Myths, Beliefs and Superstitions about the Quality of Software and of Its Teaching 7

Comment 12. This measurement is “almost right,” except that it does not measure the
great obsolescence in our field. I estimate that the mean half-life* of a computer
science concept is about 5 years. That is, every five years, half of what we know
becomes useless; not because we forget concepts or because they were inadequately
learnt. Just because these concepts are no longer useful, they are obsolete: bubble
memories, remote job entry, punch tape... The measurement of point H simply
measures the foday quality, the quality as measured today. What will happen in five
or ten years with alumnus 1 versus alumnus 2? May be alumnus 1 still displays useful
knowledge, while alumnus 2 (the more knowledgeable today) no longer has. One
rusted faster than the other. That is, alumni formation (specially in high obsolescence
fields, such as ours —this is due to its youth, scantly 60 years old) depends on two
factors: (a) the basic, theoretical knowledge, which will enable our alumni to keep
acquiring knowledge through his productive life, outside College; and (b) the “today”
knowledge, the knowledge that is “fashion today” (in 2004, objects, UML, Java, say)
that will allow them to become immediately productive. “To go out into the sugar
cane field and start cutting cane.” Knowledge acquired in College is like the quality of
a machete, which depends on two attributes: its femper, that permits it several
resharpenings along its productive life (and we need to prepare alumni capably of a
productive life of 40 years), and the sharpness of the cutting edge (which allows
immediate productivity, “to go out and start cutting cane.” My problem with
procedure H is that only measures the sharpness of the edge, the “today usefulness.”
Add measurements every five years (longitudinal studies), or add measurements
(today) about the degree of theory and basic subjects (those that can hardly change in
50 years, say) that the alumnus has; this knowledge is what renders him resistant to
obsolescence.

I. Quality of a College Is Measured by the Quality of Its Alumni.

Comment 13. Again, this is “almost true.” Certainly, we tend to give high quality to
those Colleges that produce high-quality alumni. But often these schools require the
entering students to have already high quality. At entrance time. High entrance
requirements. I only accept the best. Obviously, these people will exit school better
prepared than students at another College who, due to incoming deficiencies, finish
their studies less well prepared. To be fair, the quality of a school should be measured
by the added value. That is, measure the student at entrance and exit times, and
perform a subtraction.

2.2 To Measure Quality of the Alumni, It Is Sufficient to Measure Quality of the
Process

The certification process of a College implies measuring the teaching process that it
carries. There is a thought that good (certified) colleges produce high quality alumni.

3 The half-life of a radioactive substance is the time taken by that substance’s mass to decay to
half its original mass.

