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PREFACE

The purpose of these notes is to give an account of Hardy classes
on infinitely connected open Riemann surfaces and some related topics.
Already in this Lecture Notes series we have a beautiful monograph
"Hardy Classes on Riemann Surfaces" by Maurice Heins, which appeared in
print in 1969. It is therefore natural that our stress should now be

placed on some new advances we have seen during subsequent years.

As generally recognized, Hardy classes made their debut in the
literature in 1915, when G. H. Hardy discussed the mean growth of func-
tions analytic on the unit disk in his paper [15]. The theory of these
very useful classes of functions was laid its foundation in the work of
Hardy himself, J. E. Littlewood, F. and M. Riesz, G. Szegd among others.
And we now have a large and still growing amount of literature in this
area. Speaking roughly, Hardy classes have been studied most inten-
sively in the case of the unit disk from the cradle for its importance
as well as simplicity. The case of finitely connected surfaces, planar
or not, has drawn much attention and enjoyed considerable progress in

recent years.

Opposed to this, our knowledge seems to be relatively small in the
case of infinitely connected surfaces. The classical theory of Hardy
classes deals mostly with the unit disk and does not have much direct
bearing on our present problem. From 1950's downwards, functional-
analytic methods have found their successful applications in the field
of complex function theory including Hardy classes and the abstract
Hardy class theory thus created has grown to form the core of the newly-
born theory of function algebras, as evidenced from Gamelin's book [10]
for example. Nevertheless, the case of infinitely connected surfaces,
as I understand it, still lies beyond the reach of the new theory and
needs an independent study as in the case of polydisks and balls. The
structure of general Riemann surfaces is not yet very well known and
so we should begin with this basic question: "For which class of in-
finitely connected open Riemann surfaces can one get a fruitful exten-
sion of the classical theory of Hardy classes?" In the present notes

we will try to give an answer, partial at least, to this question.
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Our idea for attacking the problem is very simple and says that
any nice surface should carry an ample family of holomorphic functions.
But what do we mean by this? The candidate we wish to put forward here
as most promising is the class of Riemann surfaces of Parreau-Widom type
(abbreviated to "PWS" in the following). The definition will be given
in Chapter V. This class was first introduced by M. Parreau [52] in
1958 and also, perhaps independently, by H. Widom [70] in 1971 from very
different motives. They used different definitions, which later turned
out to be essentially the same. The main reason why we are interested
in this class of surfaces 1is expressed in the following fundamental
result of Widom:

(A) An open Riemann surface R 1is of Parreau-Widom type if and
only if every unitary flat complex line bundle over R has nonconstant
bounded holomorphic sections.

Moreover, surfaces of this kind inherit many other nice properties
of the unit disk or finitely connected surfaces. We list most relevant
results in the following, where R denotes a PWS.

(B) Every positive harmonic function on R has a limit along
almost every Green line issuing from any fixed origin in R.

(C) The Dirichlet problem on the space of Green lines on R for
any bounded measurable boundary function has a unique solution, which
converges to the given boundary function along almost every Green line.

(D) Almost every Green line £ on R issuing from any fixed
origin (0 converges to a point, say bl’ in the Martin boundary A of
R and the correspondence & - b2 is measure-preserving with respect
to the Green measure on the one hand, and the harmonic measure on A
for the point 0 on the other. Furthermore, the usual solution of the
Dirichlet problem for R with any bounded measurable boundary function
on A converges to the data along almost every Green line.

The statement (D) means in particular that the Brelot-Choquet prob-
lem (see Brelot [5]) has a completely affirmative answer for any PWS.
It seems indeed that PWS's form the first general class of surfaces of
infinite genus for which this problem has a positive solution. More-
over, the statement (D) can be refined so as to have the following:

(E) Stolz regions with vertex at almost every point in A can be
defined and the boundary behavior of analytic maps from R can be
analysed in detail as in the case of the unit disk.

It is possible to generalize the Cauchy-Read theorem to PWS's.

The theorem consists of two statements, whose refinements are called,
respectively, the direct Cauchy theorem--(DCT) for short--and the in-

verse Cauchy theorem. Concerning these, we first have:



(F) The inverse Cauchy theorem holds for any PWS.

The converse of this statement is also true. Namely, we have:

(G) If R 1is a hyperbolic Riemann surface and if the set H”(R)
of bounded holomorphic functions on R separates the points of R,
then the inverse Cauchy theorem holds if and only if R 1is a PWS.

Thus the inverse Cauchy theorem almost characterizes surfaces of
Parreau-Widom type. On the other hand, the direct Cauchy theorem--an
utmost refinement of the Cauchy integral formula--is not always valid.
As we shall see, there exist PWS's of infinite genus for which the di-
rect Cauchy theorem holds, while there exist planar PWS's for which the
direct Cauchy theorem fails.

The corona problem for PWS's can be studied with some interesting
results. First we have:

(H) Every PWS R can be embedded homeomorphically as an open sub-
set in the maximal ideal space of the Banach algebra H™(R) .

This, however, is all one can say about an arbitrary PWS. The
corona problem for general PWS's has a negative answer, contrary to the
expectation one might have. A curious fact in this connection is that
a PWS can satisfy the corona theorem without satisfying the direct
Cauchy theorem. These two things look like independent. Finally, we
state another fact:

(I) If a PWS R 1is regular in the sense of potential theory, then
H”(R) is dense in the space of all holomorphic functions on R in the
topology of uniform convergence on compact subsets of R.

We have been talking about relevant properties of PWS's to be dis-
cussed in these notes. Apart from PWS's, this book contains a detailed
account of the classification problem of plane regions in terms of Hardy
classes. As it turns out, almost all that happen in the category of
Riemann surfaces can happen in the category of plane regions. Intui-
tively, PWS's are surfaces which are good in some sense or other. So
our last result shows that plane regions can be as ill-behaved as one

can imagine.

In writing these notes I have been led by the feeling that the sur-
faces of Parreau-Widom type probably form the widest family of well-
behaved surfaces as far as the theory of Hardy classes is concerned.

It is hoped that our description in the following pages will Jjustify
this feeling somehow or other. One thing I wish to note is that our
study is not a mere adaptation of the existing knowledge of Riemann sur-
faces. It also aims at finding some new facts which are neither too
general nor too special. The present notes are not complete in any

sense but just reflect the author's personal interest in the field.
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At all event I hope that our effort would help not only extend the the-
ory of Hardy classes but also increase our knowledge of Riemann surfaces

in general.

The prerequisites for reading these notes are the fundamentals of
advanced complex function theory and some knowledge of functional anal-
ysis. As for the function theory, we assume that the reader has some
acquaintance with the facts to be found in Chapters I, II, III, V of
Ahlfors and Sario [AS] and also in the first four chapters of the book
[CcC] by Constantinescu and Cornea. As for the functional analysis,

Chapter 1 of Hoffman [34] may be useful, if not sufficient.

We now comment on the contents of the present notes. The function-
theoretic prerequisites are sketched in Chapter I without proof. In
order to deal reasonably with Hardy classes on multiply-connected open
surfaces, we rely on two concepts: multiplicative analytic functions
and Martin compactification. These are explained in Chapters II and
III, respectively. Chapter IV contains preliminary observations on
Hardy classes, where the boundary behavior is our principal concern.
The main body of this book begins in Chapter V. There, the definition
of surfaces of Parreau-Widom type is given after Widom. After showing,
by means of regularization, that this definition is essentially equi-
valent to Parreau's, we present a detailed proof of Widom's fundamental
theorem mentioned in (A) above. In Chapter VI we discuss the Dirichlet
problem on the space of Green lines (see (B), (C)) and then solve the
Brelot-Choquet problem for PWS's (see (D)). Two types of Cauchy theo-
rems--direct and inverse--on PWS's form the main theme of Chapter VII.
There, the statement (F) is established by using Green lines and, as an
application, it is shown that H® is a maximal weak-star closed subal-
gebra of L” on the Martin boundary. Next, the direct Cauchy theorem
(DCT) is precisely stated. We prove a weaker version of (DCT), which
is valid for any hyperbolic Riemann surface, together with some applic-
ation. On the other hand, (DCT) itself fails sometimes. But this can-
not be seen until we know something about invariant subspaces, which
are studied in Chapter VIII. In Chapter VIII we classify closed H” -
submodules of LP--(shift-)invariant subspaces of LP--on the Martin
boundary of a PWS. Corresponding to the known results for the case of
the unit disk, we consider two principal types of invariant subspaces,
which are called doubly invariant and simply invariant, respectively.
As for doubly invariant subspaces the situation is rather simple for
any PWS. But the so-called Beurling type theorem for simply invariant

subspaces is not always valid for PWS's. It is proved in fact that the
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Beurling type theorem is valid if and only if (DCT) is. In this con-
nection, examples in Chapter X may be interesting. We give there three
types of construction: the first defines PWS's of infinite genus (of
Myrberg type) for which (DCT) holds; the second yields a family of
planar PWS's for which (DCT) fails but the corona theorem holds; and

the third gives PWS's for which the corona theorem is false. In the
same chapter we also prove the statements (H) and (I). In Chapter IX

we first prove the statement (G), which characterizes PWS's among hyper-
bolic Riemann surfaces, and then collect a couple of conditions on PWS's
equivalent to (DCT). Finally in Chapter XI we solve Heins' problem
concerning classification of plane regions by using Hardy classes. The
statement (E) will not be proved but just sketched in Chapter VI. There
are three appendices and a list of references, which is by no means ex-

haustive.

My interest in the subject treated here was first aroused while I
was visiting the University of California at Berkeley in 1962-64. For
this I am indebted to Professors E. Bishop, H. Helson and J. L. Kelley.
It was C. Neville's thesis [45], that led me in 1972 to a serious study
of Hardy classes on infinitely connected Riemann surfaces. I would thus
like to thank Professor L. A. Rubel, who showed me the thesis right
after its completion. I also owe thanks to Professor L. Carleson, who
invited me to the Mittag-Leffler Institute during its Beurling Year in
1976-77, when I was able to deepen my knowledge of Hardy classes. The
primitive version of these notes was written then. New discoveries have
made the notes expand subsequently. Most of the main chapters were re-
written for a series of lectures I gave on the present topics at Tokyo
Metropolitan University during the week of July 5, 1982. Particular
thanks are due to Professors M. Sakai and S. Yamashita, who organized
the lectures and made some valuable suggestions. I have much benefited
by very helpful remarks from Professors Z. Kuramochi and H. Widom and
Dr. M. Hayashi, to whom I wish to express my appreciation.

I would like to dedicate this book to Professor Zir6 Takeda, who
is my first teacher on the research level and whose inspiration and en-

couragement have remained with me as fresh as ever.

Mito, Ibaraki Morisuke Hasumi
July, 1983
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CHAPTER I. THEORY OF RIEMANN SURFACES: A QUICK REVIEW

Some basic results in the theory of Riemann surfaces are collected
here for our later reference. They are stated without proof but most of
them can be found together with complete proofs either in Ahlfors and

Sario, Riemann Surfaces or in Constantinescu and Cornea, Ideale R&dnder

Riemannscher Fldchen, referred to as [AS] or [CC] below.

§1. TOPOLOGY OF RIEMANN SURFACES

We refer to [AS] for most basic definitions concerning Riemann
surfaces, which will not be given here, e.g. conformal structure, local
variable, parametric disk, intersection number, etc. In what follows,
R denotes a Riemann surface. Unless otherwise stated, all Riemann

surfaces are assumed to be connected.

1. Exhaustion

1A. Every connected open set in R 1is called a (sub-)region (or
domain) in R. Every region in R 1is supposed to have the conformal
structure induced from that of R. A region D in R 1is called a

regular region in R if it is relatively compact, the boundary aD of

D in R consists of a finite number of nonintersecting analytic

curves, and R\ D has no compact components.

Theorem. If R 1is an open Riemann surface, then there exists an in-
creasing sequence {Rn}njl of regular regions in R such that Cl(Rn)
- . . - - @

is included in R_,, for each n =1, 2,... and R = Unzl R . ([as],
Ch. II, 12D)

Any sequence of regular regions Rn in R having this property

is called a regular exhaustion of R.

1B. Existence of a regular exhaustion shows that every Riemann
surface R admits a locally finite covering consisting of parametric

disks and hence that R can be regarded as a polyhedron, i.e. a tri-



angulated surface, which we denote by K = K(R) ([AS], Ch. I, 46A).

Theorem. K = K(R) 1is an orientable polyhedron. It is a finite poly-

hedron if and only if R 1is a compact or compact bordered surface.

1C. Let K be an orientable polyhedron. A finite subcomplex P

of K 1is called a canonical subcomplex if (i) P is a polyhedron and

(ii) every component of K\P 1is infinite and has a single contour.

n=1
called a canonical exhaustion of K if K 1is the union of Pn and if

An increasing sequence {Pn} of canonical subcomplexes of K is

every border simplex of Pn+l does not belong to Pn'

Theorem. Let R Dbe an open Riemann surface. Then the polyhedron K

= K(R) has a subdivision which permits a canonical exhaustion. ([AS],
Ch. I, 29A)

By a canonical (sub-)region in R we mean a regular region D

such that every component of R\D has a single contour.

Corollary. Every open Riemann surface R admits a regular exhaustion
{Rn}n:l consisting of canonical subregions.

2. The Homology Groups

2A. Let R Dbe a Riemann surface and Hl(R) the l-dimensional
singular homology group of R ([AS], Ch. I, 33B). By 1C the surface
R can be regarded as an orientable polyhedron, which we denote by K
= K(R). Let Hl(K) be the l-dimensional homology group of this poly-
hedron K ([AS], Ch. I, 23D). Every oriented l-simplex in K 1is
regarded as a singular l-simplex on the surface R. This gives rise to
an isomorphism of Hl(K) onto Hl(R), which is called the canonical
isomorphism ([AS], Ch. I, 34A).

2B. Thus the properties of the group Hl(R) can be obtained by
looking into Hl(K). A finite or infinite sequence of cycles in K,
labeled in pairs by ass bi’ is called a canonical sequence if a. x aj

= bix bj =0, aix bi = 1 and a; xbj = 0 for 1 # j, denoting by

axb the intersection number of l-chains a and b ([AS], Ch. I,

31A).
If R is a compact surface, then K is a finite orientable poly-

hedron and there exists a canonical sequence a;, bi, i = Lysmmy Bs

which forms a basis for Hl(K). Hence, dim Hl(R) = dim Hl(K) = 2g.



The number g 1is called the genus of the surface R.

If R is a compact bordered surface with q contours CRERREE
Cq—l’ q > 1, then there exists in K a canonical sequence as, bi’
i=1,..., g, which, together with all but one contours, forms a basis

of H;(K). Hence, dim Hl(§> = dim H (X) = 2g+q-1 ([AS], Ch. I,
31D). The number g 1is again the genus of R.

2C. Finally let R be an open surface, so that K 1is an orient-
able open polyhedron. Let D be a regular subregion of R. Since the
closure Cl(D) of D 1is regarded as a compact bordered surface, it
defines a finite polyhedron K(C1(D)). By applying a suitable subdivi-
sion to K if necessary we may assume that K(C1l(D)) is a subcomplex
of K. So we have a natural homomorphism of Hl(K(Cl(D))) into Hl(K)'
Since no components of R\ D are compact, we see that the homomorphism
is in fact an isomorphism and therefore that Hl(K(Cl(D))) is identi-
fied with a subgroup of Hl(K). Turning to the region D itself, we

have

Theorem. Let D be a regular subregion of R. Then the group Hl(D)
is regarded as a subgroup of Hl(R) by identifying every l-chain in D

with one in R.

In case D 1is a canonical subregion of R, it is seen moreover
that Hl(D) is a direct summand of the free abelian group Hl(R)' See
[AS], Ch. I, §8§31-32 for a detailed discussion.

3. The Fundamental Group

3A. Let (0 be a point in R, which is held fixed. The funda-
mental group FO(R), referred to the "origin" 0, is defined to be the
multiplicative group of homotopy classes of closed curves issuing from
0 ([AS], Ch. I, 9D). Every closed curve Yy from 0 can be considered
as a singular l-simplex. We thus get a natural homomorphism of FO(R)

onto Hl(R)’ which takes the homotopy class of y to its homology class.

Theorem. Under the natural homomorphism the homology group Hl(R) is
isomorphic with the quotient group FO(R)/[FO(R)] of F,(R) modulo
the commutator subgroup [FO(R)] of FO(R). ([AS], Ch. I, 33D)

3B. By a character of an abstract group G we mean any homomor-
phism of G into the circle group (= the multiplicative group of com-

plex numbers of modulus one). The set of all characters of G forms



a group with respect to the pointwise multiplication of characters. The

group thus obtained is called the character group of G and is denoted

by G#*. The preceding theorem shows that Hl(R)* is isomorphic with
FO(R)*. Combined with the last remark in 2C we have

Theorem. Let D be a canonical subregion of an open Riemann surface
R such that 0 € D. Then FO(D) is a subgroup of FO(R) and every
character of FO(D) is the restriction of some character of FO(R).

§2. CLASSICAL POTENTIAL THEORY

4. Superharmonic Functions

4UA. Let D be a region in a Riemann surface R. An extended
real-valued function s on D 1is called superharmonic if (i) =-o <
s(z) £ +» on D and s # +=; (ii) s 1is lower semicontinuous; and
(iii) for every a 1in D there exists a parametric disk V with
center a such that Cl(V) €D and

\%

2m .
s(a) > éL J s(relt)dt
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for 0 < r <1, where V 1is identified with the open unit disk. A
function s on D 1is subharmonic if -s 1is superharmonic. A function

on D is harmonic if it is both superharmonic and subharmonic.

4B. A collection S of superharmonic functions on D 1is called

a Perron family if (i) for every pair of elements Sy S, in S there
exists an Sy in S with min{sl(z), SQ(Z)} > 53(2) for all =z in

D; (ii) for every s in S and every parametric disk V with CL(V)

L]

€ D, there exists an s in S such that

1 [T it ety o
2m

s'(z) £ 5=
0 e -z

for all =z in V; and (iii) S has a subharmonic minorant, i.e. there

" on D such that s 2 s" for all

exists a subharmonic function s
s in S. A collection S of subharmonic functions on D 1is a Perron
family if -S = {-s: s € S} 1is a Perron family of superharmonic func-
tions. Perron families are very useful in constructing harmonic func-

tions. The reason is given by the following



