proceedings

of the

eleventh annual
computer personnel
research conference
june 21-22, 1973

edited by
theodore c. willoughby
the state university of new york at binghamton

the special interest group on computer -
personnel research [SIGCPR] of the
association for computing machinery

proceedings

of the

eleventh annual
computer personnel
research conference
june 21-22, 1973

edited by
theodore c. willoughby
the state university of new york at binghamton

the special interest group on computer
personnel research [SIGCPR] of the
association for computing machinery

Copyright ©+1973, by SIGCPR (Special Interest Group
on Computer Personnel Research), c/o Association for
Computing Machinery, 1133 Avenue of the Americas,
New York, New York 10036,

A copy of the most recent SIGCPR Annual Conference
Proceedings is sent to each member of SIGCPR as a
benefit of membership, Additional copies of these
and previous annual proceedings may be purchased
from: Order Dept., P, 0. Box 12105, Church Street
Station, New York, New York 10249, Price is
$5.00; all orders must be prepaid,

Foreword

The Eleventh Annual Computer Personnel Research Confer-
ence, sponsored by the Special Interest Group on
Computer Personnel Research (SIGCPR) of the Association
for Computing Machinery (ACM), was held at the Center of
Adult Education of The University of Maryland, College
Park, Md., June 21 and 22, 1973.

The purpose of the annual computer personnel research
conference is to identify and discuss the common problems
and needs of those individuals concerned with the selec-
tion, training, evaluation and other aspects of computer
personnel management. Research and problems reported are
of interest to personnel managers, computer installation
managers, and researchers involved with personnel admin-
istration of computer centers.

Representative papers are presented throughout the con-
ference, followed by prepared and open discussion. The
papers are published in these proceedings and constitute
what is considered by the SIGCPR Executive Committee to be
the most significant work brought forth this past year,

Cmitted in this publication of the proceedings is
"Profiling P1/I Source Programs," by James L. Elshoff and
Robert L. Beckermerger of General Motors Research Labora-
tories, as well as the discussion by James H. Burroughs,
U.S. Air Force. Also omitted are workshop presentations,
chaired by Elizabeth Campbell of the Nassachusetts
Institute of Technology and Dr. Harlan Mills, IBM Federal
Systems Division.

SIGCPR seeks to explore computer personnel problems and
provide access to a constantly growing body of computer
personnel data gathered nationally at all levels in the
computer field. Its membership includes representatives
of large corporations, university groups, government
organizations, small companies and service bureaus whose
interests include scientific, business and research
programming and computing. Further information on the
group's activities may be obtained from Malcolm Gotterer,
Professor, Department of Mathematical Sciences, Florida
International University, Miami, Florida.

Special acknowledgement is made of the Conference

Planning Committees Dr. Gotterer (Chairman), Florida
International University; Robert A. Dickmann. (Arrangements

iii

Chairman), U.S. Department of Labor; and Ashford Stalnaker
(Program Chairman), Georgia Institute of Technology.

Theodore C. Willoughby
Editor

iv

Contents

KEYNOTE ADDRESSI COMPUTER MAGIC Ce e s s e s0ss s et l
David Freedman, State University
of New York at Binghamton

RESEARCH NEEDS IN THE NEXT DECADE .sivcceoevceooocnnne 11
Robert Reinstedt, RAND Corporation

ORGANIZING AND MANAGING COMPUTER PERSONNEL:

CONCEPTUAL APPROACHES FOR THE MIS MANAGER 19
Cyrus F. Gibson and Richard L. Nolan,
Harvard Business School

A NEW APPROACH TO PROGRAMMER APTITUDE TESTING 49
Charles J. Testa, University of
Maryland

ANALYSIS OF CAREERS FOR GEORGIA YOUTH

IN COMPUTER OCCUPATIONS. 1971-?6 © 0 0 00 000008000000 62
John L., Fulmer, Georgia Institute
of Technology

LARGE SYSTEM OPERATORS AS PROFESSIONALS
AND OTHER OPERATCR CONSIDERATIONS ,..vesvecocoscsnoes 80
Richard H. Branton, Southern Services, Inc,

COGNITIVE PREDICTORS OF SUCCESS IN

COMPUTER PROGRAMMER TRAININGccoveeovcacsscssocs 98
Stuart J. Jacobs, Southern Connecticut
State College

PANELs CERTIFICATION OF COMPUTER PERSONNEL 115
Fred H, Harris, The University of Chicago;
Robert Reinstedt, RAND Corporation;
J. L. Hughes, IBM

KEYNOTE ADDRESS:
Computer Magic

David Freedman
State University of New York at Binghamton

THE TRANSMISSION OF MAGIC

Computer programming is a profession which requires
training. This training is offered in universities,
computing companies, and through professional organi-
zations, It is also offered informally at computer in-
stallations, in coffee shops, in car pools, and at most
places where there is more than one programmer or at
least one programmer and a machine.

For many years anthropologists have studied the differ-
ences between science and magic through the efforts of
Bronislaw Mali?owski who observed that primitive tribes
practice both, 1) science is used in those situations
where the people have a great deal of knowledge and
control, but magical elements enter when there are
factors which no amount of manipulation can control.
Malinowski's people -- the Trobriand Islanders -- are
extremely scientific in planting gardens, building boats
and caring for livestock, but follow strict magical
rites to make their gardens grow, provide calm weather
for sailing and encourage the reproduction of their
pigs. Science may cure them, but magic tells them why
they are sick.

For a number of years we have studied the formal and in-
formal training of computer programmers in both indus-
trial and university environments. We have noticed that
programmers are rigorous and careful in dealing with situ-
ations which they can control. When dealing with a new
and unknown situation, however, programmers often use
magical manipulations., If these manipulations are suc-
cessful, they become ritualized and are passed on from

one programming generation to the next.

At the School of Advanced Technology, an entering stu-
dent is required to show proficiency in six areas: AFL,
PL/1, Logic and Boolean Algebra, Probability and Statis-
tics, Numerical Analysis, and Set Theory. Proficiency
is demonstrated by passing an on-line multiple-choice
examination. Students lacking the necessary background
in any area are offered short courses -- video tape
presentations supplemented by discussions and a computer
laboratory in which the student can receive help with
programming problems. After completing all proficiency

work, the student enters core courses in architecture,
applications, and programming.

Of the core courses, only the architecture course is
designed to be theoretical. In the two workshop courses,
students are taught to consider such things as numerical
validity, time and space efficiency, and that any reli-
able program is more efficient than any unreliable pro-
gram. Theory is not entirely neglected, for students
are also introduced to the formal aspecfs of a language =--
the formal language definition of PL/1,) and syntactic
and semantic rules for approaching other languages.

These required core courses represent the only necessary
intersection of all the students' training -- an inter-
section with only moderate theoretical emphasis,

The programming class is divided into working groups,
each group having the same specifications and deadlines.
Our school's grading policy (pass-no record) encourages
cooperative rather than competitive learning, and there
is a great deal of intergroup cooperation. At the
computer center, non-student jobs are given high priori-
ty, and students find the best turn-around times late

at night. Since the center is practically empty at

these hours, the students have a quiet atmosphere to dis-
cuss their programs and thus to learn from each other.

This focal point of interaction provides an ideal locus
for ?us studies of the psychology of computer program-
ming(3) using the anthropologist's technique of
“participant observation”(4), From hundreds of hours

of such observation, we have discovered that at least

as much education occurs during these all night sessions
as in scheduled classes. It is in such informal set-
tings, as in almost every computer center in the country,
that the oral tradition of computer magic is passed from
person to person.,

MANA

During one semester, the final programming project re-
quired the use of an 0S/360 sort -- one purpose of which
was to introduce the student to the use of technical
manuals, One week before the deadline, no group had a
working program., A collective panic seized not only the
groups but the instructor also. Each night, the entire
class arrived at the computer center with box lunches and
pillows, planning to sleep over., Finally, on the last
remaining night, the mistake was found: two parameters
in the manual were given incorrectly. Since there was
no time to explain the error, the "magical" cards were
passed from group to group until all programs worked.

We refer to the cards as magical because the students

treated them as if they had "mana". Mana is a supernatu-
ral force found in an object or individual. It is most
often discussed in the Melansian conteft aéthough simi-
lar beliefs exist throughout the world{5)(6), One
cannot acquire mana nor cause it to enter an object.
Once acquired, it cannot be prevented from leaving, but
while it remains, the object has supernatural power. A
stone ax which has mana will cut better than any other
ax, a tree with mana will grow better than any other
tree, and a deck of computer cards with mana will work
better than any other deck. On this penultimate night,
working better simply meant working. Indeed, these
cards were so powerful that they were passed on to the
students in the next programming class, but by then the
specifications had been altered and the sorting sequence
was slightly different., 1In spite of the change, many of
the students had so much faith in the magic cards that
they turned in incorrect programs only to find that the
mana had "fled."” We have on more than one occasion
observed a student waiting for a particular terminal to
be vacant, or a particular key punch to be open before
beginning to work. When we inquired as to his motiva-
tion, we found that he felt the terminal or key punch
worked better for him, although there was nothing
physically wrong with the other available machines.

RITUAL MAGIC

Successful magic, just like successful science, has been
known to spread through time and space. A Job Control
deck for a compile and go operation was hastily con-
structed in New York City in 1966. A duplicate version
of the deck was shown to a programmer in Stockholm some
three years later. They had no idea where the deck orig-
inated, for it had been in the installation when they
arrived. Although there had been numerous changes in

the system since the construction of the deck, no one in
the Swedish installation wished to take the responsibili-
ty of changing the supernatural. After all, the programs
were working -- or seemed to be.

To the anthropologist, such duplicated cards represent
not "m?g%" but a different type of magic called "ritual"”
magic. There is nothing supernatural =-- no mana =--
about the cards themselves, since this was a duplicated
version., The power is in the correct carrying out of
the ritual. As long as the formula is correct, the
magic will work., The efficiency of such magic is not
easy to disprove. Even if the desired result is not
achieved, one can never be certain that the ritual was
performed correctly. Perhaps the reproducer failed,

Ritual magic beliefs affect computer programs in effi-
ciency as well as in reliability. A programmer who has
become comfortable with a prescribed procedure is re-
luctant to change his method. This fear of the unknown,
and its consequence, is not unique in computing. 1In a
small Swiss valley, the people produce a particularly
good and inexpensive cheese. The cheese is always in
demand, and demand far exceeds the supply. Unfortunate-
ly, the peeple can't increase the supply for they are
supporting nearly the optimum number of cows given the
ecological constraints., When asked why their cheese has
its unique flavor, most of the inhabitants agree it is
because of the grazing. They are not sure of the exact
type of grass or combination of flowers, but they are
afraid to use chemical fertilizers to increase the growth
for fear of changing the taste of the cheese. Since no
one seems to know the reason for the taste of the cheese,
this conservative attitude may be extremely functional.

In computer programming, a conservative attitude often
leads to inefficient operations., If there exists a
routine, large scale application which must be run with
frequency, little or no modification will be attempted
for fear of dire consequences. Programs designed for
705's and 1401's with limited capacity are still being
emulated on spanking new 360's and 370's because no one
in the installation knows how they were constructed,
what their limitations are, or even how they work.
Ritual magic retards change.

NAME MAGIC

Man in his attempt to control his environment has named
his universe. The book of Genesis tells how Adam
walked around his garden naming each plant and animal in
its turn. In many American Indian tribes, a warrior
receives from his guiding spirit a secret name, or
secret song, which he jealously guards for it brings him
power, Were his enemy to know his secret name, his
enemy could control him,

The computer programmer knows and respects the magic of
names, The entire process of finding mnemonics and
acronyms is full of magical qualities. For example, we
were shown an assembler language program which was in
an endless loop. This program contained a counter,
stored in a location named ONE, Unfortunately, the
value at location ONE was zero. When reading such pro-
grams, programmers rarely check to see the stored value,
for certainly nothing other than 1 could be found in
location ONE, especially since the programmer knows

he put it there.

Ritual magic occurs often among APL programmers. We have
observed students sitting at the terminal repeating a
function which continues to return error messages. Be-
lief is evidently strong enough to keep them trying the
same unsuccessful program, particularly if it comes from
a public library. Program libraries are the high point
of ritual magic.

To the casual user, a public library is part of the
computer, He does not know the specifications for which
the program was written, nor the "fuzz" factor of AFL,
nor what the output is supposed to look like. As an ex-
ample, in one of our university's physics courses,
students check their experimental results with an APL
program, If the results of the program do not match the
experimental results, the student then has an opportunity
to repeat his experiment. Even assuming that the program
is "reliable,” it is clear that this practice encourages
magical beliefs., The student is being told that his
observations are incorrect, but the pronouncement of the
deity (in this case, IBM 370/155) is gospel. He may not,
in all probability, have the necessary skill or confi-
dence to check or question the program.

In another case, a professor was introduced to a parti-
cular program by her graduate student., Neither the
graduate student nor the professor had ever seen the
program code. Rather they had heard about the documenta-
tion from someone who had used the program, and they
played with the input format until they got the desired
results. The professor then assigned the project to the
class. Certainly this is an excellent use of the uni-
versity's computing facilities., This method of teaching
introduces new techniques and makes education dynamic
and individually oriented. However, it also increases
the magical aspects of the computer,

If there is a mo?%gication in the program, or if natural
selection occurs » the program may fail to give reli-
able results. By the time this happens the graduate
student may have left the school, Even if he is still in
attendance, he may not have the expertise to understand
the change. By the time any explanation filters down to
the undergraduate students in the class, it will surely
seem like magic.

This situation may be generalized to a non-academic envi-
ronment,

Because of the high rate of turnover in many computer
installations, and the reluctance to alter existing
software, many routine programs have never been examined
by anyone in the installation. They may work, but no
one really knows "how they work" -- ritual magic.

Another example of name magic occurs in naming variables
which are used as loap counters. In our video tapes, as
well as in the APL text, the letter "I" is invariably
used for a counter. As might be expected, the letter
*I" is used most in student programs, followed closely
in frequency by the word “COUNT".

There is nothing necessarily wrong with ritually imita-
ing programs unless imitation replaces learning.

Another classic example of ritualistic imitation was
found in our computer laboratory. The programmer wished
to increment his counter by 2, and wrote in two separate
statements:

I«I+l
T¢I+l

When asked why he had not written
I«I+2

he responded that he was not certain it would work, as
he had never seen that type of increment. This astound-
ing reply led us to do a small informal experiment.

When students were asked if the statement

I¢I+l

was syntacticly correct, they invariably said "yes" but
faltered when shown

IeI+2

Again, as in the case of the Swiss farmer, if you don't
know what you are doing, but it works, don't change it.

Loop structures seem to be filled with examples of
imitation. A vast majority of the APL programs we have
read have the increment and test statement at the end,
as in the following loop:

loop:t (expression)
(expression)

»(N>I«I+1)/LOOP

Even if the initial value of "I" were greater than that
of "N", the program would go through the loop once.
When this defect is explained to the programmers, they

usually admit that they have never thought of that situ-
ation. Some programmers, however, have hotly responded
"Well, 'I' could never BE greater than 'N'." Perhaps,
but in computing, never is a long time, and time is
expensive,

THE DESIRE TO BELIEVE

The right-to-left rule of AFL is a natural place for
magical ideas to arise. When a student asks why does
APL read from right to left, he may receive one of a
number of possible answers:

1, "It's more natural.,"”

2, "It has to be done that way because of the
hardware."

3. "Don't worry about it, just remember: APL AL-
WAYS READS FROM RIGHT TO LEFT."

Unfortunately, to the inquiring mind, always does not
appear to be always. We overheard a dialogue between
an instructor and a student that went something like
this:

Student: "Does APL always read from right to
left?"

Instructor: "“Yes, always,"

Student: "Then how come the lamp (comment indi-
cator) appears on the left?"

Instructor: "Well, I guess in that case it doesn't
read from right to left."

Similar questions have been raised by students about in-
dexing from left to right, and the "take" and "drop"
functions operations from left to right. Unfortunately,
the answers to these questions are often "because," which
may be true, or is the best possible answer, but it

leads to such rules as:

APL ALWAYS READS FROM RIGHT TO LEFT, EXCEPT WHEN
IT READS FROM LEFT TO RIGHT

which is remarkably similar to "THE PROGRAM WORKS IN ALL
CASES...EXCEPT THAT ONE"” or "THE RITUAL ALWAYS WORKS,
EXCEPT WHEN IT DOESN'T."

For example, we were debugging an indexing program, and
the latest version had a "little bug."” After three
people had looked at the program, one finally found that
an operation was carried out in a subroutine which was
called only when the input had two page numbers. If
there was only one page number, this routine was by-
passed, and so was a necessary correction. The program=-
mer who had done most of the work looked up smilingly
and said, "Well, most of the entries will have two page
numbers anyhow"” and trotted off to do the correction.
Indeed, the bug had only appeared in one case, and,
after all, the program did work in all cases except

that one,

COMBATING MAGICAL INFLUENCES

Magical beliefs start early so they must be fought early.
For example, it is difficult for the beginning student
to separate the relevant variations of a language from
the irrelevant variations. Anthropological linguists
are faced with a similar problem when they attempt to
study a new language. They attempt to collect as many
"utterances" as possible and then attempt to understand
when variations are meaningful. For instance, In Stand-
ard American English, the "p" sound as in pit is phonet-
ically different from the "p" sound as in spit, the
difference being aspiration. However, to a speaker of
the language this phonetic difference is not phonemi-
cally significant., That is, it conveys no difference

in meaning. The two different "p" sounds are allophones
of the same phoneme, i.,e. there is no difference in
meaning between an aspirated "p" and an unaspirated "p"
in English,

Understanding computer languages is a similar situation.
There are times when the choice of names for a variable
is not influenced by meaning, but rather free variation.
In APL, for instance, the choice of a name for a vari-
able does not influence the attributes of that variable
whereas in FORTRAN it does. If the rule could be es-
tablished that in AFL the choice of names never makes a
difference, whereas in FORTRAN it always makes a differ-
ence, then the problem would be solved. But what of
the case in APL where there is a global variable in a
public library? If the student chooses the same name
for a variable in his routine the program might not
work. Depending on the name, the program's behavior is
altered. Clearly, examples of when differences are
differences must be presented.

This can be done in a number of ways. &Again, working
from the model of linguistics, the instructor can
present examples in which the variation presents no
significant difference, and then contrast these with

8

examples where the variation is significant, showing that
it is not the choice of name which makes the difference,
but rather the context or environment in which the name
is being used, We have found that these differences

can be taught by a rather simple exercise. After a
group of students has finished a working program, the
program is given to a second group., Their assignment is
to rewrite the program, using different names, and
different syntactic structures. In this manner, students
learn that:

PUT SKIP LIST(X,Y)s
and
PUT LIST(X,Y) SKIP;
are forms in free variation, but

PUT SKIP LIST(X,Y);

PUT SKIP LIST(Y,X);

are not,

In the first example, the variation has not affected the
output, in the second example it does. Instances of sig-
nificant vs. insignificant variation must be pointed out
explicity. Programmers must be able to justify their
actions. Only then will there be uniformity and effici-
ency in software, Even if a section of code works =--
find out why and demonstrate it. For he may indeed come
to realize during the grand demonstration that it only
works most of the time. Otherwise, "magic" remains a
reasonable explanation for the differences.

Magic cannot prevent magical beliefs. Magic should be
combated by science. Students of data processing should
be trained in the scientific method. They should assume
that their programs do not work, and only when they can
demonstrate by a series of hypotheses and proofs that
the program performs as expected, are they finished.
Simply, science is supposed to be the model for data
processing, and a scientific model must be used.

Research Needs in the Next Decade

Robert Reinstedt
RAND Corporation

When faced with the topic of what the thrust of research
might be in the next decade it becomes very quickly
evident that it is easier to pick one research effort,
design it, gather and process the data and report on it
than it is to look into the future through a cloudy
crystal ball and see much besides fog. What motivates
one to keep looking (aside from the fact that a speech
has been promised on the subject) is the optimist's syn-
drome or, for those of you who are familiar with the
story, "I know there's a pony around here somewhere."
That "there is research around here somewhere" is really
not in doubt, but what shape it will take and the speci-
fic direction it will take in the next decade is a matter
which does indeed reguire more attention.

Some of the concomitant questions must also be addressed.
My talk today might be viewed as analogous to planning

a curriculum; this is an essential part of the educa-
tional system, but without the other ingredients such as
faculty, students, facilities, etc., is worth very little
in and of itself, For me to simply outline a shopping
list of interesting research needs and ignore the prob-
lems of accomplishing such research would be equally
worthless,

So, before we start on some major effort to watch apples
falling from trees we had better recruit some Newtons.
Fortunately, for the programming field, there is a
larger population of researchers available from which to
draw and contributions can be made which do not nearly
require the genius of a Newton, But good, solid re-
searchers are required and in order to accomplish the
needed research the environment must be such that it
attracts competent individuals to perform studied analy-
ses. And although personnel researchers don't need to
compare with Newton, they have at least one thing in
common, and that is to be gainfully employed for pur-
poses of eating. To date there has been pitifully little
monies available for any kind of personnel research in
the programming field. What research has been done has
been largely under the auspicies of individual corpora-
tions, in some cases bootlegged or on an individual's
own time, or by someone whose primary goal is a thesis;
a limited number of studies have been subsidized by
grants, and, predictably enough, some of the most inten=-
sive research has been carried out by test developers.

11

