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PREFACE

The International Conference on Transformation Groups was held at Osaka University from
December 16 to December 21,'1987. The conference was supported by the expenditure of a government
enterprise, the Shoda Fund for International Exchange and Grant-in-Aid for Co-operative Research, The
Ministry of Education, Science and Culture.

There were a total of 136 participants from the following countries: Denmark, Finland, Japan,
Korea, Libya, Poland, Republic of China, United Kingdom, United States of America, West Germany.

The aim of the conference was to reflect recent advances in the theory of transformation groups
and to stimulate discussions for new directions and for future research.

Titles of all lectures given at the conference are listed below.

These Proceedings contain accounts of the lectures presented at the conference as well as articles
by those who were invited but could not attend. All papers have been refereed and I take this opportunity
to thank the authors and the many referees.

I am extremely grateful to all the speakers and participants who made the conference successful.
Also, I would like to express my gratitude to all those people who helped me in preparing the conference.
In particular, I would like to thank Professors M. Nakaoka, H. Nagao and S. Murakami for their kind
administrative support. Moreover, special thanks are due to my colleagues M. Ochiai, T. Yoshida,
K. Yamato, Y. Kamishima, M. Morimoto, M. Sakuma, J. Murakami, T. Kobayashi, I. Nagasaki,
Y. Ochi and F. Ushitaki who helped me very much in organizing the conference. It is also my great
pleasure to thank Y. Oohori and Y. Nakamura for their invaluable secretarial assistance and excellent
typing.

Finally I wish to thank Springer-Verlag for publishing this volume and I hope that this volume
will contribute to the further progress of the theory of transformation groups and to the broadening of its
scope.

Katsuo Kawakubo

Osaka, January 1989 «
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A Personal Perspective of Differentiable
Transformation Groups

(Dedicated to Prof. D. Montgomery)
WU-CHUNG HsIANG!

Differentiable Transformation Group has been an active subject in topol-
ogy for a long time and I have been one of the participants since the early
60’s. Let me take this opportunity to present some of my personal views.
It is impossible to compile a good list of references. There are too many!
Since this note is only a personal perspective, I shall skip all the precise
references.

I. Early Stage.

A. Hilbert’s Fifth Problem. Let G be a locally compact group effectively
acting on a topological manifold (C°). Hilbert asked whether G is a Lie
group. Since the early 30’s, many people had devoted great efforts to solve
this problem until Gleason, Montgomery-Zippin proved that G is a Lie
group if it also acts transitively on a topological manifold. Many very
important developments in various branches of mathematics were created
because of this problem. As I see it, differentiable transformation group has
its root in Hilbert’s Fifth Problem.

B. P. A. Smith Theory. P. A. Smith proved the following theorem in the
40’s.

Let G = Z/p (p is a prime) act on a finite complex X such that

H*(X; Z[p) = H*(S"; Z/p)-

Then,
H*(X%; Z[p) = H*(S'; Z/p)

for some .

This theorem sets the prototype and the direction of future research. If
we study an action of G on a space X, we should find a model action of G
on a ‘good space’ Y such that we should compare the topological behaviors’
of these two actions, the similarities as well as the distinctions. The first
level should be the comparison of the cohomology of the fixed point sets
of various subgroups. Many problems were posed as the generalizations

1l"’Aninlly supported by an NSF Grant.



of P. A. Smith’s theorem. Unfortunately, most of them turned out to be
incorrect, e.g. Floyd showed that P. A. Smith’s theorem fails to hold for
G = Z/pq. In any case, most work in the 50’s was devoted to study the
cohomological structure of the fixed point set.

C. The Principal Orbit Theorem and the Slice Theorem

(Montgomery-Samelson-Yang).

Let G be a compact Lie group differentiably acting on a (compact) C*
manifold M. It was proved by Montgomery-Samelson-Yang that there ezists
a unique absolutely minimal conjugacy class of isotropy subgroups (P) such
that the set of the orbits of the type G/P form an open dense subset of M.

As we pointed out in the discussion of the P. A. Smith theory, we should
have a model of this theorem. Let G act on the Lie algebra of via the
adjoint representation. This is the model. In this case, the maximal torus
Toas,

Montgomery-Yang also observed the following theorem.

The Slice Theorem. Let (G, M) be given as above and let G/H C M
be an orbit of G. Then we may choose a normal tubular neighborhood
N(G/H) of G/H together with a representation of H on the normal disc
D!, ¢ : H— O(D") such that N(G/H) is G invariant and it is the total
space of the associated bundle

D' GxyD'—-G/H

of the prinicpal bundle
H—- G- G/H.

These two theorems make the actions of compact Lie groups different
from dynamic systems, the actions of R.
D. Borel’s Seminar. In 1959, Borel conducted a seminar at The Institute
for Advanced Study on transformation groups. This is a systematic study
of P. A. Smith theory. One of the important influence of the seminar is that
Borel introduced the following construction. Let G be a (compact) group
acting on a (finite dimensional) complez X. We consider

XG=EG XGX.

In fact, we now define the equivariant cohomology
Hy(X; )= oH' (XG5 )
Since X is the total space of the fibration
X — X¢g — Bg,

we may use the spectral sequence to study H%(X; ). For F = X, we
have the following map of bundles



F —- FxBG — BG

l l I
X - Xa — BG

Note that if G = S!, H*(BG;Q) = P[y] dim y = 2. Borel proved that
Hu(X;Q)v™'] & Ha(F3Q) [y

and similar results for G = Z/p. This gives severe restrictions to the coho-
mology of the fixed point set. We can generalize this to torus and elementary
p-groups by considering various corank 1 subgroups. These facts are the
bases of the cohomological studies of the actions of torus and elementary
p-groups due to Quillen and Wu-yi Hsiang.

I1. Influx of Differential Topology.

In Borel’s seminar, it was noted that differentiability was not essential in
the previous studies. The influx of differential topology came from several
directions.

A. The G-bordism of Conner-Floyd.

Conner-Floyd began their study on G-bordism as they attempted to prove
that an odd periodic map on an oriented closed manifold can not have only
one fixed point. They used differential topology to study G-actions up to a
bordism. Essentially, they were computing the bordism groups of BG.

B. P.A. Smith Theory for Classical Groups.

In the middle 60’s, Wu-yi Hsiang and I tried to study differentiable actions

of a classical group G on a homotopy sphere " (or a Euclidean space)

¥;Gx L — X",
Our main question was when we can choose a representation
Yp:G—-0(n+1)

such that ¥ ‘resembles’ . This is the Smith philosophy for ‘large’ groups.
There were earlier examples due to Bredon, but we studied this problem
systematically for ten years. We finally understood the picture reasonably
well if the principal isotropy subgroup is not trivial. Some of the work was
done jointly with M. Davis. In our study, differentiability plays an essential
role.

C. Index Theorem. The G-signature theorem of Atiyah-Singer and the fixed
point theorem of Atiyah-Bott have many important applications to topol-
ogy. In particular, Wall and Petrie applied it to surgery theory which had
very important impact on differentiable transformation groups. In fact,
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there is a PL version of this theory which was used to study the topological
conjugacy problem for linear representations of a finite group G. (See J.
Shaneson’s Warsaw International Congress Report for references.)
D. Explosion. After G7— G9, it became clear that we should apply modern
differential topology to transformation groups. For a given action

U:GxM—M,

we ought to consider M/G as a stratified space (orbiford) and M as a
G-handlebody over M/G.

L. Jones studied the converse of P. A. Smith theory, i.e., building actions
of Z/p on discs, etc. R. Oliver studied the non-existence of fixed point for
actions of finite groups on a disc, i.e., if we wish to have a model, then
we need some restrictions on the group or on the action. M. Davis gave
the most satisfactory analysis of the actions of classical groups initiated
by Bredon, Wu-yi Hsiang and myself, i.e., large groups may behave better
in some circumstances. Finally, Petrie and his school studies G-surgery
theory systematically and proved that if we don’t put any restriction on G
or the action, then the old conjectures were wrong most of the time. For
example, after an example due to E. Stein, he showed that there are many
differentiable actions on homotopy spheres with one fixed point.

So, this is the qualitative state of differentiable transformation groups.

III. Where Do We Go From Here?

As far as I can see, we shall use differentiable (compact) transformation
group theory as a tool. Due to the complications of the examples con-
structed so far, it is similar to advanced calculus. The theory is very useful
but no one can integrate all the improper integrals. We should move on.
A. Algebraic Actions of Classical Groups.

Recently, H. Bass and T. Petrie and their coworkers have started to study
algebraic actions on affine spaces. We are still at the infant stage. There
is a ‘good’ étale slice theorem via an analysis on the representation spaces.
It seems to me that we understand the object somewhat but we don’t
understand the morphism. In differential topology, the morphism (i.e., the
attaching map) is rather flabby but this is probably not so for algebraic
actions. We need some insight.

The simplest semi-simple group is SL(2,R). Inside this group, we have
two important subgroups

(o) ()




Can we use some techniques from dynamic systems to study the restricted
actions of these subgroups (from the given action of SL(2,R))?
B. Elliptic Cohomology and S' Actions on Loop Spaces.

Landweber and Stong are making calculations of elliptic cohomology from
bordism point of view. So far, it seems to be an ad hoc approach. Segal
makes some philosophical suggestions. Due to its relation with S ! actions
on loop spaces, it should be a good playground for people interested in
(compact) group actions.




Smooth SL(2,C) actions on the 3-sphere

Tohl Asoh
Department of Mathematics, College of General Education
Tohoku University, Kawauchi, Sendai 980 Japan

1. Introduction

The special linear group G=SL(2,C) contains K=SU(2) as a maximal compact
subgroup, and there are two equivariant diffeomorphism classes of smooth K actions
on S°represented by linear actions.

In this note we study the equivariant homeomorphism classes of smooth G actions
on S3

In case of transitive actions; we have

Theorem 1.1. There are real analytic G actions ¢, on S® for r ¢ R (see (3.1)),
which are not equivariantly homeomorphic to each other, and any transitive G actions
on S® is equivariantly diffeomorphic to some ¢,.

In case of non-transitive actions; the classification of G actions on S® can be
reduced to that of triads of subsets A and BJ. (j=1,2) of SY(CC) satisfying

(A1) A(# @) isafinite union of closed intervals, ANJ(A)= @ and the components
of A alternate with those of J(A), where J is the reflection on S! in the real
line. (A2) B;(j=1,2) are open in S! and B,UB,C A -4A.

Such triads (A, Bj) and (A', Bj') are called A-equivalent if there is an
orientation preserving homeomorphism ® of S' onto itself such that ®J=J% and

(1) ®(A) = A", ®(B) =B, or (2) P(A) = J(A"), P(B)= J(Ba_,-') (j=1,2).

We see the following theorem.

Theorem 1.2. There is a one-to-one correspondence between the equivariant
homeomorphism classes of non-transitive smooth G actions on S® and the A-

equivalence classes of triads with (A1-2).
As the corollary to these theorems, we have

Corollary 1.3. (i) There are infinitely many (non-equivalent) smooth G actions on
S3 which are not equivariantly homeomorphic to any real analytic one.
(ii) Any real analytic G action on S® has a finite (odd) number of orbits, and non-
transitive real analytic ones are determined by the number of their orbit ; among them

the unique linear action has five orbits.



Recently F. Uchida shows that our method is useful to study

SO(p,q) actions on Sp+q-l.

2. Subalgebras of sl(2,C) and subgroups of SL(2,C)

The Lie algebra of G=SL(2,C) is
g = sl(2,C) = {X ¢ M(2,C) ; Trace X = 0}

with the bracket operation [X,Y] = XY — YX. In this section we prepare some results
on subalgebras of g and subgroupsof G.
Choose a R-basis of g

- i(lO)K_i(Ol)K 1(01)H . i
e PR T D e BRI el e T el

Then these satisfy the following relations:

(2.1) —[Kq,Kp] = K¢ = [Hqg, Hp), —[Kaq, Hpl =H, = [Kb,Ha] and [Ka,Ha] =0
for (a, b,¢) = (1,2,3),(2,3,1),3,1,2).

We say that subalgebras u and u' of g are conjugatein G if Ad(g)u' = u for
some g € G, where Ad: G — GL(g) is the adjoint representation of G.

Consider the following subalgebras

(2.2) k = <Ki,Ko,K3>,u, = <Kj,rKo—H3,rK3+H2> (r ¢ R) and
ve = <K1,H;,Ko—eH3,K3+eHo> (e = 1),
where < > denotes a R-vector space spanned by the elements in the angle bracket.

Proposition 2.3. Let u be a proper subalgebra of g with dimu = 3. If Kj € u,
then u is k, u,(r € R) or v (e = t1). Here u, isconjugateto k,u,and u,if [r|>1,
|r|<1 and |r|= 1, respectively, and further v, is conjugateto v_;.

Proof, If Kj€u, then u Nk = <K1> or k. Therelation (2.1) implies that u = ur
or vg(resp. k) incase u Nk = <K1> (resp.uNk = k). g.e.d.

Corollary 2.4. Any proper subalgebra u of g with dimu = 3 is conjugate to one

of

k = <K1,K2,K3>, u, = <Kj,Hz,H3>,u, = <Ki,Ko—Hg3,K3+Hg>
vi1 = <Ki,H1,K2—-H3,K3+H2> and w, = <rKi1+Hy,Ko—H3,K3+Ho>(r€R),



and these subalgebras are not conjugate to each other.

Proof. The relation (2.1) implies that u is conjugate to w, if u N k = {0}. Thus the
first half holds by the above proposition. The second half follows by using det u =
{detX ; X ¢ u} and the Killing form of g, which are Ad(G)-invariant. g.e.d.

Now consider the following connected closed subgroups of G.

K =SU@), U —{( S (r_l)w>~ €C, | + (2 8
(2.5) o i) —(r+1); - IRy ,|2| + (r —1)|w| =1}
exp(ri—1)x 0
and W ={( ; );xER,zEC}(rER).
r z exp(l —rix

Lemma 2.6. (i) The subalgebras k, u, and w, are the Lie algebras of K, U, and
W, respectively.
(ii) The coset space G/U, is homeomorphic to

R3 if |[f|>1 and S’XR if |f|=1.

Proof. (i) is clear. (ii) G/K ~ R® holds, because K is a maximal compact subgroup
of G. There is a transitive G action on S?2XR with an isotropy subgroup U, (||=1),
and hence G/Ur~ S?XR ([r|=1). g.e.d.

Lemma 2.7. G = KLU, = KLK (r € R) for L = {diag (x, 1/x) eM(2,C) ; x>0}.
3. Transitive actions

In this section we state an immediate consequence of the previous section, and

prove Theorem 1.1.
Foreach r € R the analytic G = SL(2,C) actionon S® = C? — {0}/R* , defined by

(8.1) ¢A(X,[P]) = [exp(irlog(|XP|/||P|)XP] (X € G,P € C* — {0}),
is transitive and its isotropy subgroup at [%0,1)] €S® is W, of (2.5).

Proof of Theorem 1.1. The equivariant homeomorphism classes of transitive G
actions on S?° are classified by the conjugacy classes of connected subgroups U eof G
with G/U= S®. Therefore the theorem follows from Corollary 2.4 and Lemma 2.6.
q.ed.

4. Non-transitive actions



To begin with we prepare some results on smooth actions. Let ¢:G X M — M be
a smooth G action on M, and denote by g and X(M) the Lie algebras of G and
smooth vector fields on M, respectively.

(4.1)([3 ; Ch.II, Th.IT]) The map ¢* : g — X(M), given by

" 00 h = lim h@lexp(=1X),p) = o) o

t—0 t g)

for any smooth function A around p¢ M, is a Lie algebra homomorphism.

The isotropy subalgebra g, = {X¢g; $*(X)p = 0} at pe M is the Lie algebra of the
isotropy subgroup G, of G at p.

In case that g issimple and ¢ is non-trivial, $* is monomorphic, and hence g is
regarded as a subalgebra of X(M) by identifying X = ¢*(X).

From now on we shall classify non-transitive smooth G=SL(2,C) actions on S3,
and set

G=SL(2,C), K=SU(2), T={diag(z,2)¢€ K ; |2| = 1(CK),
g =sl(2.0), k = m2) = <Kj, K2, K3> and S°=H/R*
for H = {PeM(2,C) ; 0+ P = P*}.

The following (4.2) is known (cf.[1 ; Th.1.3]).

(4.2) Any non-transitive (and non-trivial) smooth K action on S? is equivariantly
diffeomorphic to the linear action ;

v, : KXS3— 8*, g (X, [P]) = [XPX*] (X¢K, P¢H).
The fixed point sets of y, under T' and K are
@ 8) (€S = B(T. S )DF(K, S°) ={X1}

by the diffeomorphism S!>x+iy — diagx+y, x—y)eF(T, S®) (x, yeR). Thus the
reflection J of S! is given by

0 -1
(4.4) J(z)=\p0(j,z) for z€ S! and j=<1 8 )EK.

To classify non-transitive G actions on S®, we may assume by (4.2)

(4.5) ¢ : GXS®— S® is a smooth G-action on S? such that its restricted K action
coincides with y,i.e. |KXS? = y,.

Lemma 4.6. (i) The map €: RXF(T, S%) — F(T, S%),

(4.7) €(t,2) = dplexp(—tH1),2) (t€R,z€F(T,S?)) for Hi€g,



