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INTRODUCTION

Let Q Dbe an open subset of the complex plane. We are interested
in two classes of analytic functions on Q. The first, denoted by
Hw(ﬂ), is the set of bounded analytic functions on Q; and the second,
which we call A(Q), is the set of functions in HW(Q) possessing
continuous extensions to the Riemann sphere SE. Because of the maximum
principle, it is often more convenient to discuss Hm(Q) and A(Q) in
terms of the complementary set E = SE\Q instead of (. Rotating SE
so that « € Q, we can assume that E 1is a compact plane set.

Perhaps the best way to describe the problems considered below is

to prove two elementary theorems. ILet E be a compact plane set and

let Q= S%E be its complement.

Painleve's Theorem: Assume that for every € >0, the set E can be

covered by discs the sum of whose radii does not exceed €. Then H(2)

consists only of constants.

Proof: For each € >0 we cover E by a collection of dises,
the sum of whose radii does not exceed €, and we let r‘E be the
boundary of the union D_ of these discs. If fe H(Q) and f(=) =0,
then by Cauchy's theorem

f(z)=L Pg(%)—d-g, z(fs.

ami ¢
3

€ * ]f|
o t £ =0
Thus |f£(z)] < BT aist(z,T,) Sending €& to O we ge (z)

for all z € Q.
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Theorem: If E has positive area, then A(Q) contains non-constant

functions.

Proof: Write
| d€dn
F‘(Z)=b/fE -2 C=8+1n

Clearly F(z) is analytic on the complement Q of E, and, being the
convolution of the locally integrable function -1/ and the characteristic
function of a bounded set, F(z) is continuous on the complex plane. Since

limz_mF(z) =0, F is in A(Q), and F is not constant since

lim zF(z) = -Area E.
Z—0

That proves the theorem, but let us examine the function F

more closely. At infinity F(z) has the expansion
2
F(z) = -Area(E)/z +8,/z" + .-

Define R by ‘n’R2 = Area(E) and let A be the disec {C:]|C - z| <R}.

Then

|7(2) | sﬂE%JgAﬁg—dﬂ—ng\Ak—ﬁ% :

Since E and A have the same area, so do E\A and A\E, while the

integrand is larger on A\E than it is on E\A. Thus

IRt R i

E\A N\E

and so
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|F(z)] 5_[/;T2L?T';r=m ]

This gives us a function g(z) = F/2TR in H (2) such that |g[ <1

and

2
bl/z + be/z £ wisie

g(z)

where Ibll > g = % AEE%LEI . In other words, we have estimated the
analytic capacity of E (defined in Chapter I below) in terms of the
area of E.

The hypothesis of each sample theorem is measure theoretic (in
Painleve's theorem the measure is one dimensional Hausdorff measure),
and each is proved by representing a function as the Cauchy integral of
a Borel measure. Our purpose is to survey what can be said concerning
two problems:

g Representing functions in H“KQ) as Cauchy-Stielt jes

integrals

£(z) = guéﬁ%

E

20. Estimating or describing analytic capacity in terms of
measures, and applying such estimates to approximation problems.

These notes contain much that is old and a little that is new.
Hopefully, they are intelligible to the graduate student who knows
elementary real and complex analysis and a little functional analysis,

and who is interested in analytic capacity and related fields. As



three fine expositions of rational approximation theory [28], [81],
[88] are already in print, it seems unnecessary to discuss that theory
in any depth. Thus the Melnikov-Vitushkin estimates on line integrals
have been ignored, and when we use Vitushkin's approximation techniques
in Chapter V we give suitable references but no details.

In some instances a theorem has a person's name attached to it,
often simply because that is what the theorem is called. But no doubt
some important results have not been ascribed to their originals, and
unattributed theorems should not be assumed the author's discovery.

Throughout each chapter there are exercises and problems. Some
exercises are very routine, and some problems are old and famous,
but the only real distinction is that I think I can do the exercises.

Chapter I is an exposition of the theory of analytic capacity.

It begins at the beginning, and thus has some overlap with other
sources. Chapter II concerns the Cauchy integral representation.

It contains a simple characterization of Cauchy transforms. The
relation between bounded analytic functions, Hausdorff measure, and
Newtonian potential theory is taken up in Chapter III. In Chapter IV
we discuss three examples, and in Chapter V applications are made to
approximation theory.

I wish to thank H. Alexander, A. Davie, L. Hedberg, P. Koosis,

K. Pietz, H. Royden, J. Wermer and L. Zalcman for valuable suggestions
and conversations. I am especially grateful to T. Gamelin for advice
at every stage of the preparation of this paper. I also thank Laurie
Beerman for typing the manuscript.

Certain notation should be mentioned. A(z,8) stands for the open

dgisc {C:|C - z| <8} and sS(z,8) is the closed square of side
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6 and center z. TIts sides are parallel to the axes. The symbol W
denotes a finite complex Borel measure; Su is its support and Iul is
its variation measure. Unless otherwise indicated,a.e. refers to area,
and ||f]| is the supremum of |f| over its domain. C: are the compactly
supported infinitely differentiable functions, and C:(D) are those with
support inside D. A function g is in Lpoc if Iglp is integrable

1
over every compact set. Finally

(&-+3)

&l
|
ho] L




CHAPTER I. ANALYTIC CAPACITY

§1. Basic Properties

Let E be a compact plane set and let Q = Se\E. When f is
analytic on Q its derivative at o is computed using the local

coordinate 1/z, so that

£1(w) = lim z(£(z) - £(=)) .

Z—0

Expanding f in a Taylor series about «,
f(z) =a. +a /z +a/z2+

0 1 2

we have f'(») = a In other words,

»
£1() = 57 fr £(¢)ac

whenever the curve T separates E from «. Define the analytic

capacity and continuous analytic capacity respectively as follows

YE) = sup{|£'(=)| : £ € H(2), [£]l <1}

a(E)

sup{|£'(=)| : £ € A(Q), [If]l <1} .

Theorem 1.1: Hm(ﬂ) consists only of the constants if and only if

YE) = 0; A(Q) consists only of the constants if and only if «(E) = 0.

Proof: Clearly,if <(E) >0 then H (2) contains non-constant functions.
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On the other hand, if H (R) is not trivial there is f ¢ H(Q) with
f(w) =0 and f(zo) # 0 for some Z # ©. Then the function

(£(z) - f(zo))/(zo -2z) is in H(Q) and has derivative f(zo) at
o, so that (E) > 0. The same argument shows A(Q) is nontrivial

if and only if «a(E) > 0.

If feH(Q) and [l£]| <1, then

g(z) - Hel_EC)
1 - T(=)f(2)

is in HN(Q): ”8” <1, 8(‘”) =0 and

8'(“’) = i(L

1 - |g(«)]?

Thus when computing the extremum <(E), we can restrict our attention

to functions vanishing at «. Using the standard notation

A(E,M) = {f e H () :

£l <™, £(=) =0}
we have

sup{|£'(=)| : £ € A(E,1)} .

AE)

Similarly, letting
C(E,M) = A(E,M) N A(Q) ,
we have

o(E) = sup{|£'(x)| : £ € C(E,1)} .
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If f(w) =0, then limz_mzf(az +b) = af'(»), and we have

the invariance properties

Y&E + b) la|V(E)

a(akE + b) = |a|a(E) .

It is clear from the definitions that <y and « are monotone:
HE) < Y(F), a(E) <a(F) if E CF. It is also clear that a(E) < ((E).
However these two quantities are not commensurate. For, <(E) depends
only on the unbounded component of Q: <YE) = 'y(ﬁ) where E is the
union of E and the bounded components of Q. So if E 1is the circle
{z:]|z -a|l =r}, then YE) >0, but @(E) =0 by Morera's theorem.
Another example is obtained by taking E to be an interval on the
real axis. Then «(E) = 0, again by Morera's theorem, while <(E) >0
because  can be mapped conformally onto the unit disc.

When E is connected, so that Q 1is simply connected, the class
A(E,1) arises in a well known proof of the Riemann mapping theorem

[2, p. 222]. 1Indeed, we have

Theorem 1.2: Assume that E 1is connected but not a point. ILet g
be the conformal map of Q onto the unit disc satisfying g(«) =0,

g'(x) >0. Then YE) =g'(=).

Proof: Since g € A(E,1), we have g'(x) < Y(E). Let f ¢ A(E,1).

Applying Schwarz's lemma to F = f o g-l, we have |F'(0)| <1l. But

F'(0) = £'(=)/g'(=) so that [f£'(x)| <g'(=). Therefore YE) <g'(x).
Consequently, we see that if E is the disc {|z - a| < 6}, then

AE) = 8; and the extremal function is &/(z-a). And if E is a line



segment of length £, then <E) = £/4. For this it is enough to

take E = [-2,2] and observe that the conformal map g : SRE - A(0,1)

satisfies
-1
g (W) =w+1lf .

We can now estimate analytic capacity in terms of diameters as

follows
Corollary 1l.3: For any set E
a(E) < Y(E) < diam(E) .

If E 1is connected, then

y(E) > HenlE)

Proof: The first assertion follows by monotonicity, because E lies

in a disc of radius diam(E).
To prove the second assertion we can assume that E is not a point.
Let g(z) = Y(E)/z + ae/ze + <. be the Riemann map of the unbounded

component of Q onto the unit disc. Fix zO € E and write

£(w) = Tlﬂﬁl__
g (w) - Zo

Then f is univalent on |w| <1, £(0) =0, and f£'(0) =1. By the
Koebe-Bieberbach theorem [23, p. 279 ], the range of f contains |z]| < 1/4,

so that if 2z, € E, we have

1
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E
T_K_Ll'- >1/h .
2 " %

Corollary 1.3 implies that E is totally disconnected when ~(E) = 0.
The estimate on analytic capacity given in Corollary 1.3 is sharp
in the case of a line segment. In the introduction we gave another

estimate:

WE) >o(s) > 5 |, [AzealE)

m

In Chapter III this will be improved by a factor of 2, so that it is
sharp in the case of a disc.

When E is not compact define

sup{¥(K) : K compact, K C E}

YE)

a(E) = sup{a(K) : K compact, K C E}

Tt is then clear that y(U) =a(U) for all open sets U. A normal

family argument shows
YE) = inf {&(U) : U open, U D E}

when E 1is compact.
The condition Y(E) = O is necessary and sufficient for the set

E to be removable for bounded analytic functions.

Theorem 1.4: ILet E be a relatively closed subset of an open set U
and assume Y(E) =0. If f € HN(U\E), then f has a unique extension

in H(U).
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Proof: The uniqueness is trivial because E is nowhere dense. ILet
ZO € E. Since by 1.3 E 1is totally disconnected, there is an analytic
simple closed curve T in U\E which encloses zo. ILet D be the
domain bounded by TI'. Using the Cauchy integral we can write
f = fl + f2 in a neighborhood of T, where fl 3 Hw(D), and
£, € Hm(Sz\(E N D)). Since Y(E N D) =0, f, is constant, and
f extends analtyically to D.

The same result is true if f € A(U\E) and < is replaced by o.
However the above argument only works if E 1is a compact subset of U.

The simplest proof of the full result uses Vitushkin's localization

operator ([28] II, 1.7) and would be a digression at this point.

Theorem 1.5: If E isarelatively closed subset of an open set U

and a(E) = 0, then every f ¢ A(U\E) has a unique extension in A(U).

The Semi-additivity Problem: Show there exists a constant C such that

YE, UE,) < C(AE) + AE,))

for some reasonable class of sets (like the Borel sets). Equivalent
formulations of this quite important conjecture are given in [18] and

[81]. Tt is not known whether there is a constant C such that
'y(El U EZ) < C'y(El)

for all compact E2

the continuous analytic capacity o are also open and from the

such that w(Ee) = 0. The same problems for



2=

point of view of rational approximetion theory the important question

is whether or not
ot(El u E2) < (Dt(El)

when E, is compact and a(Ee) =105

Exercise 1.6: Prove that if {En} is a decreasing sequence of compact
sets and E = ern, then <(E) = lim w(En). Prove that if an] is
a sequence of compact sets such that w(Fn) = 0, then w(LJFn) = 0

Determine if the above two assertions hold with < replaced by o.

Exercise 1.7: 1In §6 it is proved that any subset of [0,1] with
positive inner Lebesgue measure has positive analytic capacity. Use
this fact and the usual construction of a non-measurable set to exhibit
subsets {En} of [0,1] such that <(E ) =0 for all n but

LJEn = [0,1]. Use the same ideas to construct two sets E, and

1

E, such that E U'E2 = [0,1], but WE,) = AE

o = 0.

i

§2. Schwarz's Lemma

As is suggested by the proof of Theorem 1.2, there is a close
connection between analytic capacity and the Schwarz lemma. Indeed
we have the following inequalities which, though elementary, are the
reasons that the extremal quantity «(E) is so important in approxi-

mation theory.

Theorem 2.1: ILet f @ A(E,1). Then for zy ¢ Q we have

E
If(ZO)' = distizO,Ei °



