‘.OqosaonNE'/McGraw-Hiu

Some COrhmon
~ Pascal Programs

Based on the book
Some Common BASIC Programs

% R , TR i
r L e [/ F
! I A —— 2l /

Some Common
Pascal
Programs

Based on the book
Some Common BASIC Programs

Published by
Osborne/McGraw-Hill
630 Bancroft Way
Berkeley, California 94710
U.S. A.

For information on translations and book distributors outside of the
U.S.A,, please write Osborne/McGraw-Hill at the above address.

SOME COMMON PASCAL PROGRAMS

COPYRIGHT. This collection of programs and their documentation is copyrighted. You
may not copy or otherwise reproduce any part of any program in this collection or its
documentation, except that you may load the programs into a computer as an essential step
in executing the program on the computer. You may not transfer any part of any program
in this collection electronically from one computer to another over a network. You may not
distribute copies of any program or its documentation to others. Neither any program nor
its documentation may be modified or translated without written permission from
Osborne/McGraw-Hill.

UCSD Pascal is a trademark of the Regents of the University of California.
Apple is a registered trademark of Apple Computer, Inc.

NO WARRANTY OF PERFORMANCE. Osborne/McGraw-Hill does not anécannot
warrant the performance or results that may be obtained by using any program in this book.
Accordingly, the programs in this collection and their documentation are sold “‘as is”’
without warranty as to their performance, merchantability, or fitness for any particular
purpose. The entire risk as to the results and performance of each program in the collection
is assumed by you. Should any program in this collection prove defective, you (and not
Osborne/McGraw-Hill or its dealer) assume the entire cost of all necessary servicing,
repair, or correction.

LIMITATION OF LIABILITY. Neither Osborne/McGraw-Hill nor anyone else who has
been involved in the creation, production, or delivery of these programs shall be liable for
any direct, incidental, or consequential benefits, such as, but not limited to, loss of
anticipated profits or benefits, resulting from the use of any program in this collection or
arising out of any breach of any warranty. Some states do not allow the exclusion or
limitation of direct, incidental, or consequential damages, so the above limitation may not
apply to you.

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a data base or
retrieval system, without the prior written permission of the publisher, with the exception
that the program listings may be entered, stored, and executed in a computer system, but
they may not be reproduced for publication.

1234567890 DLDL 8765432
ISBN 0-931988-73-X

Cover design by Peter Kunz

Some Common
Pascal
Programs

Introduction

These 76 programs solve common problems in the areas of finance, business, mathematics, statistics,
and home budgeting. All programs are ready to be typed into your computer and run.

You don’t have to be a programmer to use this book, but you must understand the subject matter of
the programs. It is beyond the scope of this book to explain in detail where, when, how, or why you
would use any of them. Of course, this does not mean that you must be a financial analyst to the use the
Discount Commercial Paper program or a mathematician to use the Poisson Distribution program.
There are sample runs and practice problems for each program. If you understand the applications well
enough to know that the program may fit your needs, but you would like more information, you will find
suggestions for further reading with most programs.

This book’s secondary purpose is to show by example the wide range of subjects that lend themselves
to computerization. All too often, computer users who have cut their teeth on entertainment computing
have trouble coming up with ideas for practical computing. So, even if you don’t see a program in this
book that is exactly what you need, you may find it easier to invent your own practical applications after
studying some of these.

As you look through the programs in this book, you may discover that you can use parts of the
programs or some of the programming techniques in your own work. For example, this book includes
functions for manipulating dates and character strings which can be amalgamated into other programs.
You may even use an entire program as a component part of you own larger, more complex program.
Some of these programs share code with programs in the book Some Practical Pascal Programs, also
published by Osborne/McGraw-Hill. ‘

Organization

Each program is accompanied by a discussion of the subject matter, the program information, the
content and form of the output, and Program Notes. This material is followed by examples of how the
program might be used in more or less real-life situations. The point of these examples is to help you
imagine potential uses for the program. The examples demonstrate as many of the program features as
they can in a moderate-sized problem. The sample run is next, showing the dialogue between the
computer and the user when the program is used to solve the problem posed in the example. Compare
the user’s inputs and the computer’s outputs in the sample run with the problem stated in the example.
You should understand how you would use the program to solve a similar problem.

The text of the Pascal program comes next. To save typing, and to accommodate differences in the
way that different implementations of Pascal receive interactive input, some procedures, functions, and
type declarations (called Include files) used by several of the programs are printed only once in
Appendices A and B. If you type them into a file you have created for this purpose, you can simply copy
them into each program where they are needed, using your system text editor. Alternatively, most
Pascal implementations allow you to tell the compiler where to find files that will be ‘‘Included’’ at
specific places in your programs. See Appendix A for more information on Include files.

Lastly, we list references for most programs. Investigate these books and articles if you wish to read
more about the subject matter of the program.

Pascal Compatibility

These programs have been written in a very conservative Pascal, acceptable to any implementation. To
remove the worst potential problem —interactive input—all input to these programs is done through

vii

INTRODUCTION

routines to be copied from Appendix B. This appendix contains suitable routines for the most common
solutions to the problem of interactive input in Pascal. One set of routines is suitable for use with UCSD
Pascal, including Apple Pascal. Another set of routines will work for any implementation using the Lazy-
IO convention, in which characters are not read until the first time the program attempts to inspect
them. By merely selecting the appropriate routine to type in, all the programs should run without
modification on your system. See Appendix A for more information on the different implementations of
Pascal.

None of these programs requires a mass storage device (disk or tape) for storing data. Thus, the
widely varying methods for accessing data files in Pascal are not a problem. Of course, you will want to
store the programs themselves on a tape or disk once you have typed them in. This is a fairly
straightforward procedure that should be described in the manual for your computer system.

How to Use These Programs

Follow these procedures when you want to use one of the programs in this book:

1. Read the program write-up and familiarize yourself with how the program works. Consult the
suggested reference material if you need a better understanding of the subject matter that the
program addresses. Be sure that the program does what you need it to do before going any further.

2. Type the program listing into your computer. Make a note of any Include files you need to have
available, and if you are directing your compiler to find them in separate files, be sure you use the
syntax specified by your compiler. (See Appendix A for more information on this.) Look for any
lines containing comments that you should know about. If a comment line says to omit the line
unless you have a particular Pascal implementation (such as Apple Pascal) and you are not using
that implementation, do not type in the line.

3. Check your program listing carefully for correctness. Not all typing errors are caught by the
compiler.

4. Save the program on tape or disk. Do it now, before you run the program. If you do, you can
retrieve your work if anything happens while the program is running. Remember, unless your
editor keeps an audit trail or has some other unusual protective feature, you are always in danger of
losing all the work until you save the program. With longer programs you may wish to save it after
typing it in.,

5. Determine whether the current program requires any Include files that have not been typed in for
another program. Type in these new Include files and save them in separate files. If you have
directed your compiler to Include from those files, be sure you give it the correct file names. If your
text editor copies the Include files into your main program file, you may still want to keep separate
copies of the Include files for each use in later programs.

6. Compile the program. If the compiler indicates any errors, double-check your typing and check that
you used the correct Include files.

7. Run the example exactly as shown in the sample run. If you have done everything right up to this
point, the results should be similar to those published in the example. Your answers will differ
slightly from those in the book if your computer has a different level of internal numerical precision
than ours.

NOTE: Most versions of UCSD Pascal have only six digits of precision for real numbers. This may
lead to slight inaccuracies (in the cents columns) in financial calculations. If absolute accuracy is
required, you might consider learning how to use the non-standard Long Integer feature and
keeping monetary amounts in cents or mills.

8. If your answers differ markedly from ours, or your program does not run at all (that is, you get
some sort of error message), it is time for some detective work. First, double-check your listing. It
may be useful to count the number of lines, just to make sure that you have not duplicated or
eliminated any lines, a common error. If you are still having trouble, read Appendix A for
information on potential problems with implementation of Pascal.

viii

SOME COMMON PASCAL PROGRAMS

9. By now your program should be running correctly. If not, have someone else look at your program.
Often another pair of eyes can see something that you repeatedly miss. Try putting the program

aside for a while and come back to it after a short break. Errors you didn’t see before may be
obvious later.

Acknowledgments

These programs are Pascal versions of BASIC programs originally published in Some Common BASIC
Programs (Osborne/McGraw-Hill, 1977). Gregory Davidson converted 41 of the original BASIC
programs. The remaining 35 were written by Osborne/McGraw-Hill staff programmers Brad Hellman,
Brian Williamson, and Vicki Marney-Petix, and the book was edited by Vicki Marney-Petix. The original
Some Common BASIC Programs was edited by Lon Poole and Mary Borchers.

Other Osborne/McGraw-Hill Publications

An Introduction to Microcomputers: Volume 0—The Beginner’s Book, 3rd Edition
An Introduction to Microcomputers: Volume 1—Basic Concepts, 2nd Edition
An Introduction to Microcomputers: Volume 3—Some Real Support Devices
Osborne 4 & 8-Bit Microprocessor Handbook

Osborne 16-Bit Microprocessor Handbook

8089 1/ O Processor Handbook

CRT Controller Handbook

68000 Microprocessor Handbook

8080A /8085 Assembly Language Programming

6800 Assembly Language Programming

Z80 Assembly Language Programming

6502 Assembly Language Programming

Z8000 Assembly Language Programming

6809 Assembly Language Programming

Running Wild—The Next Industrial Revolution

The 8086 Book

PET® and the IEEE 488 Bus (GPIB), 2nd Edition
PET™/CBM™ Personal Computer Guide, 2nd Edition

CBM™ Professional Computer Guide

Business System Buyer’s Guide

Osborne CP/M® User Guide

Apple I11® User’s Guide

Microprocessors for Measurement and Control

Some Common BASIC Programs

Some Common BASIC Programs—PET™/CBM™ Edition
Some Common BASIC Programs—Atari® Edition

Some Common BASIC Programs—TRS-80™ Level 11® Edition
Some Common BASIC Programs—Apple II Edition

Practical BASIC Programs

Practical BASIC Programs—TRS-80™ Level 11 Edition
Practical BASIC Programs—Apple I1® Edition

Practical BASIC Programs—IBM® Personal Computer Edition
Practical Pascal Programs

Payroll with Cost Accounting

Accounts Payable and Accounts Receivable

General Ledger

CBASIC™ User Guide

Science and Engineering Programs—Apple I1® Edition
Interfacing to S-100/IEEE 696 Microcomputer

A User Guide to the UNIX™ System

PET™ Fun and Games

Trade Secrets: How to Protect Your Ideas and Assets
Assembly Language Programming for the Apple 11®

VisiCalc®: Home and Office Companion

Discover FORTH

6502 Assembly Language Subroutines

Your ATARI® Computer

CBM™ Professional Computer Guide

Contents

VWONONLWN =2

Future Value of an Investment 1

Future Value of Regular Deposits (Annuity) 3

Regular Deposits 5

Regular Withdrawals from an Investment 7
Initial Investment 9

Minimum Investment for Withdrawals 11
Nominal Interest Rate on Investments 13
Effective Interest Rate on Investments 15
Earned Interest Table 17

Depreciation Rate 22

Depreciation Amount 24

Salvage Value 26

Discount Commercial Paper 28

Principal on a Loan 30

Regular Payment ona Loan 32

Last Payment ona Loan 34

Remaining Balance on a Loan 36

Term of aLoan 38

Annual Interest Rate ona Loan 40
Mortgage Amortization Table 43
Greatest Common Denominator 47
Prime Factors of Integers 49

Area of a Polygon 51

Parts of a Triangle 53

Analysis of Two Vectors 58

Operations on Two Vectors 60

Angle Conversion: Radians to Degrees 62
Angle Conversion: Degrees to Radians 64
Coordinate Conversion 65

Coordinate Plot 68

Plot of Polar Equation 72

Plot of Functions 77

Linear Interpolation 81

Curvilinear Interpolation 83
Integration: Simpson’s Rule 86
Integration: Trapezoidal Rule 89
Integration: Gaussian Quadrature 91
Derivative 94

Roots of Quadratic Equations 96

40 Real Roots of Polynomials: Newton 98
41 Roots of Polynomials: Half-Interval Search 102
42 Trig Polynomial 108
43 Simultaneous Equations 112
44 Linear Programming 116
45 Matrix Addition, Subtraction, Scalar Multiplication 123
46 Matrix Multiplication 127
47 Matrix Inversion 130
48 Permutations and Combinations 133
49 Mann-Whitney UTest 135
850 Mean, Variance, and Standard Deviation 138
51 Geometric Mean and Deviation 141
82 Binomial Distribution 143
B3 Poisson Distribution 145
54 Normal Distribution 147
85 Chi-Square Distribution 149
86 Chi-Square Test 151
87 Student’s t-distribution 155
58 Student’s t-distribution Test 158
89 F-distribution 162
60 Linear Correlation Coefficient 165
61 Linear Regression 168
62 Multiple Linear Regression 171
63 NthOrder Regression 176
64 Geometric Regression 181
65 Exponential Regression 184
66 System Reliability 187
67 Average Growth Rate, Future Projections 189
68 Federal Withholding Taxes 192
69 Tax Depreciation Schedule 197
70 Check Writer 201
71 Recipe Cost 205
72 Survey Check (Map Check) 208
73 Dayofthe Week 215
74 DaysBetween Two Dates 217
75 Angloto Metric 219
76 Alphabetize 222
A Common Tools 227
B Common Implementations 233

1
Future Value of an Investment

This program calculates the future value of an investment which earns interest. You must know the
amount of the initial investment, the nominal interest rate, the number of compounding periods per
year, and the amount of time in months and years that the money is invested.

A financial situation may act like a compound interest calculation even when it is called something
else. A steady rise in property values is a good example. Please note that if there is only one
compounding period per year, you must specify a term in whole years to obtain an accurate answer.

Assuming there are no additional deposits and no withdrawals, the future value is based on the
formula
= pa+i/N)NY
total value after Y years (future value)
initial investment
nominal interest rate
number of compounding periods per year
number of years

where:

~Z woN N

(L I B TR

Examples:

Carl makes an investment of $6800.00 at 9.5%. If interest is compounded quarterly, what will be the
value of Carl’s investment in 10 years and 6 months?

Valerie purchases a piece of property for $16,050.00. Property values are rising at an average annual
rate of 7%. What may Valerie expect her property to be worth in five years?

Run:

Future value of an investment

Initial investment: $46800

Nominal interest rate (%) 9.5

Number of compounding periods per year: 4
Number of whole years: 10

Number of periods past last whole year: O
Future value = $ 17388.6

HWould you like another run? (y/n) vy

Initial investment: $186050

Nominal interest rate (%) 7

Number of compounding periods per year: 1
Number of whole years: 5.5

Number of periods past last whole year: Q
Future value = ¢ 22511.0

Would you like another run? (y/n) n

SOME COMMON PASCAL PROGRAMS

Program Listing:

program FutureVal(input, output);
var

NumPeriods, XtraPeriods, NumYears: integer;
investment, percent, rate: real;

{$I IntRaisel
{$I NotAgain?}

begin { main }

writeln(“Future value of an investment”):;

repeat
writeln;
write(“Initial investment: $7);
readln(investment);
write(’Nominal interest rate (%) “):
readln(percent);
write(’Number of compounding periods per year: “);
readln(NumPeriods);
write(“Number of whole years: “):;
readln(NumYears);
write(Number of periods past last whole year: “);
readln(XtraPeriods):;
rate := percent / NumPeriods / 100;
writeln(“Future value = $7, investment

¥ IntRaise(l + rate, NumPeriods * NumYears + XtraPeriods):9:2):

writeln

until NotAgain

end.

2
Future Value of Regular Deposits (Annuity)

This program calculates a future value when regular deposits are made. You must provide the amount of
each deposit, the number of deposits per year, the amount of time the future value is calculated for, and
the nominal interest rate.

Assuming that interest is compounded with each deposit, the calculation is based on the formula

R ((1 +ifmNY - l)
r=R i/N
total value after Y years (future value)
amount of regular deposits
number of deposits per year
number of years
nominal interest rate

where: T

~~2ZX
L R R T I I |

Examples:

Michel makes annuity payments of $175.00. The interest is 5.5%. What amount will Michel have
accumulated in 15 years?

Each month, Tanya transfers $50 from her checking account to a Christmas Club savings account with
5% interest. How much can Tanya expect to have saved at the end of the year?

Future Value of Regular Deposits (Annuity)

Amount of regular deposits: $50
Nominal interest rate: (%) S
Number of deposits per year: 12
Number of years: 1

Future value = $ 613.995

Would you like another run? (y/n) y

Amount of regular deposits: $17S
Nominal interest rate: (%) S5.5
Number of deposits per year: 1
Number of years: 15

Future value = ¢ 3921.51

Would you like another run? (y/n) n

SOME COMMON PASCAL PROGRAMS

Program Listing:

program annuity(input, output);

var
DepsPerYear, NumYears: integer;
AmtDep, percent, RatePerDep: real;

{$I IntRaisel}
{$I NotAgain}

begin { main 3
writeln(“Future Value of Regular Deposits (Annuity)’);
repeat
writeln;
write(“Amount of regular deposits: $7);
readln(AmtDep);
write(“Nominal interest rate: (%) “);
readln(percent);
write(’Number of deposits per year: “);
readln(DepsPerYear):;
write(“Number of years: “);
readln(NumYears);
RatePerDep := percent / DepsPerYear / 100;
writeln(“Future valye = $°, AmtDep
(IntRaise(! + RatePerDep, DepsPerYear ¥ NumYears) — 1
/ RatePerDep:9:2);
writeln
until NotAgain
end.

3
Regular Deposits

This program calculates the regular deposit amount required to provide a stated future value in a
specified time period. All deposits are equal, and the number of deposits per year must be at least one.
You must know the future value, the nominal interest rate, the number of deposits per year, and the
term in years and months.

You must be careful to input only terms that are ‘‘reasonable’’ for the specified problem. For
example, if deposits are quarterly and you specify a term of two years and two months, the answer will be
prorated on the basis of the next quarterly deposit. But, financial institutions do not prorate. A term of
two years and two months would be reasonable if deposits were monthly, however.

The calculation for regular deposits is based on the formula

R :7“(i/N)
(1+i/NNY
where: R = amount of regular deposit
T = future value
i = nominal interest rate
N = number of deposits per year
Y = number of years

Examples:

Karen would like to have $1000 in her savings account at the end of the year. How much must she
deposit each month to reach her goal, if she is receiving 8% interest on her savings?

Roman has opened an Individual Retirement Account (IRA) which he hopes will have $15,000 in 10
years and 3 months. The nominal interest rate for IR As at his bank is 12.5% and he will make quarterly
deposits. How large must each deposit be?

Regular Deposits

Desired future value: $1000

Nominal interest rate: (%) 8

Number of deposits per year? 12
Number of whole years: 1

Number of additional months(0-12):°0

Regular deposits = $§ 80.32

Would you like another run? (y/n) y
Desired future value: $15000
Nominal interest rate: (%) 12.5
Number of deposits per year? 4

Number of whole years: 10
Number of additional months(0-12): 3

Regular deposits = $ 185.19

Would you like another run? (y/n) n

SOME COMMON PASCAL PROGRAMS

Program Listing:

program RegularDeposits(input, output);
uses transcendentals;fomit this line if not Apple Pascaltl
var

NumYears, NumMonths, DepsPerYear: integer;

value, percent, RatePerDep, TotalTime: real:;

{$I RealRaise}
{81 ReadlInt}
{$1I NotAgain}

begin { main }
writeln(“Regular Deposits”’);
repeat
writelns;
write(’Desired future value: $7);
readln(value):;
write(“Nominal interest rate: (%) “):
readln{(percent);
repeat
write(/Number of deposits per year?)
until ReadInt(DepsPerYear, 1, maxint);
repeat
write(/Number of whole years: 7))
until ReadInt (NumYears, 1, maxint);
repeat
write(‘Number of additional months{(0—-12):)
until ReadInt (NumMonths,0,12);
RatePerDep := percent / DepsPerYear / 100;
TotalTime: =NumYears+NumMonths/12;
writeln;
writeln(“Regular deposits = &7,
value #* RatePerDep
/ (RealRaise(RatePerDep + 1, DepsPerYear % TotalTime) — 1):7:2):
writeln
until NotAgain
end.

4
Regular Withdrawals from an Investment

This program calculates the maximum amount that may be withdrawn regularly from an investment
over a specified time period, leaving a zero balance in the account. All withdrawals are equal. If less than
the maximum amount is withdrawn, a balance will remain in the account at the end of the time period.
You must know the amount of the initial investment, the nominal interest rate, the number of
withdrawals per year, and the term in years and months.

You must be careful to input only terms that are ‘‘reasonable’’ for the specified problem. For
example, if withdrawals are quarterly and you specify a term of two years and two months, the answer
will be prorated on the basis of the next quarterly withdrawal. But, financial institutions do not prorate. A
term of two years and two months would be perfectly reasonable if withdrawals were monthly, however.

The maximum amount of the withdrawals is calculated using the formula

i/ N i
P +—
((1 +if NN Y _ N)

amount of regular withdrawal
initial investment

nominal interest rate

number of withdrawals per year
number of years

R

where:

~ 2~
L A N I N A N |

Examples:

The twins, David and Daniel, each received legacies of $8000 from their aunt’s estate. They invested
their money with a nominal interest rate of 9.5%. David wants to make regular monthly withdrawals for
ten years. What is the maximum he can withdraw each month?

Daniel wants to make weekly withdrawals from his account for ten years and six months. What is the
maximum amount he can withdraw each week?

Regular Withdrawals from an Investment

Initial investment: $8000

Nominal interest rate: (%) 9.5
Number of withdrawals per year: 12
Number of whole years: 10

Number of additional months(0-12): O
Amount of each withdrawal = $ 103.52

Would you like another run? (y/n) n

Program Listing:

program RegularWithdrawals{(input, output):
uses transcend; { Omit this line if not using Apple Pascal 3}
var

WithsPerYear, NumYears, NumMonths: integer:

invest, percent, RatePerWith, TotalTime: real:;

