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Preface

Generative Programming and Component Engineering (GPCE) is a leading re-
search conference on automatic programming and component engineering. These
approaches to software engineering have the potential to revolutionize software
development as automation and components revolutionized manufacturing. The
conference brings together researchers and practitioners interested in advanc-
ing automation for software development. It is also a premier forum for cross-
fertilization between the programming language and software engineering re-
search communities.

GPCE arose as a joint conference, merging the prior conference on Generative
and Component-Based Software Engineering (GCSE) and the Workshop on Se-
mantics, Applications, and Implementation of Program Generation (SAIG). The
proceedings of the previous GPCE conferences were published in the LNCS series
of Springer as volumes 2487, 2830, and 3286. In 2005 GPCE was co-located with
the International Conference on Functional Programming (ICFP) and the sym-
posium on Trends in Functional Programming (TFP), reflecting the vigorous
interaction between the functional programming and generative programming
research communities. GPCE and ICFP are both sponsored by the Association
for Computing Machinery.

The quality and breadth of the papers submitted to GPCE 2005 was impres-
sive. All 86 papers, including 5 papers for tool demonstrations, were rigorously
reviewed by 17 highly qualified Program Committee members. The members of
the Program Committee first provided in-depth individual reviews of the sub-
mitted papers, and then debated the merits of the papers through an extended
electronic Program Committee meeting. After much (friendly) argument, 25 reg-
ular papers and 2 tool demonstration papers were selected for publication. The
Program Committee provided extensive technical feedback to the authors of the
submitted papers. The conference program was complemented with three invited
talks, three extended tutorials, and three all-day workshops.

The accepted papers are grouped into eight topic areas: aspect-oriented pro-
gramming, component engineering and templates, demonstrations, domain-specific
languages, generative techniques, generic programming, meta-programming and
transformation, and multi-stage programming. The invited talks were from lead-
ing innovators in the field: Oscar Nierstrasz on object-oriented reengineering
patterns, Oege de Moor on the AspectBench compiler for AspectJ, and Bernd
Fischer on certifiable program generation.

The program chairs would like to thank foremost the authors of the submit-
ted papers: their research is the justification for this conference. Both program
chairs were impressed by the expertise and diligence of the Program Committee
members and their co-reviewers. Their technical dedication, as reflected in the
quality of their reviews, was the foundation of the strength of these proceedings.



VI Preface

The general chair, Eugenio Moggi, was tireless in steering the program chairs
towards a technically superb program. The publicity chair, Eelco Visser, went
beyond the call of duty in raising awareness of the conference in the software
engineering and programming languages research communities. Andrew Malton
and Jeff Gray solicited and organized a workshop and tutorial program of interest
to researchers and practitioners alike. Tarmo Uustalu graciously served as local
arrangements chair, providing a hospitable atmosphere in the beautiful venue
of Tallin, Estonia. The paper submissions and the reviewing process were ably
supported by the Web-based EasyChair system (http://www.easychair.org/).
The program chairs would like to extend our appreciation to Andrei Voronkov,
who developed EasyChair and is the leading force behind its continued develop-
ment. His personal attention to our conference greatly facilitated managing the
volume of reviews and discussions amongst the Program Committee. Finally,
we would like to recognize the importance of the gentle guidance of the GPCE
Steering Committee. Their long-term dedication is the core that binds together
this research community.

July 2005 Robert Gliick
Michael Lowry
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Object-Oriented Reengineering Patterns
An Overview

Oscar Nierstrasz!, Stéphane Ducasse?, and Serge Demeyer?

! Software Composition Group, University of Bern, Switzerland
? Laboratoire d’Informatique, Systémes, Traitement de 'Information,
et de la Connaissance, Université de Savoie, France
3 Lab On REengineering, University of Antwerp, Belgium

Abstract. Successful software systems must be prepared to evolve or
they will die. Although object-oriented software systems are built to
last, over time they degrade as much as any legacy software system. As
a consequence, one must invest in reengineering efforts to keep further
development costs down. Even though software systems and their busi-
ness contexts may differ in countless ways, the techniques one uses to
understand, analyze and transform these systems tend to be very sim-
ilar. As a consequence, one may identify various reengineering patterns
that capture best practice in reverse- and re-engineering object-oriented
legacy systems. We present a brief outline of a large collection of these
patterns that have been mined over several years of experience with
object-oriented legacy systems, and we indicate how some of these pat-
terns can be supported by appropriate tools.

1 Introduction

A legacy software system is a system that you have inherited and is valuable to
you. Successful (i.e., valuable) software systems typically evolve over a number of
years as requirements evolve and business needs change. This leads to the well-
documented phenomenon that such systems become more compler over time,
and become progressively harder to maintain, unless special measures are taken
to simplify their architecture and design [13].

Numerous problems manifest themselves as a legacy system begins to turn
into a burden. First of all, knowledge about the system deteriorates. Documen-
tation is often missing or obsolete. The original developers or users may have
left the project. As a consequence, inside knowledge about the system may be
missing. Automated tests that document how the system functions are rarely
available.

Second, the process for implementing changes ceases to be effective. Simple
changes take too long. A continuous stream of bug fixes is common. Maintenance
dependencies make it difficult to implement changes or to separate products.

Finally, the code itself will exhibit various disagreeable symptoms. Large
amounts of duplicated code are common, as are other “code smells” such as
violations of encapsulation, large, procedural classes, and explicit type checks.

R. Gliick and M. Lowry (Eds.): GPCE 2005, LNCS 3676, pp. 1-9, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Concretely, the code will manifest architectural problems such as improper
layering and lack of modularity, as well as design problems such as misuse of
inheritance, missing inheritance and misplaced operations. Excessive build times
are also a common sign of architectural decay.

Since the bulk of a (successful) software system’s life cycle is known to reside
in maintenance, and “maintenance” is known to consist largely in the introduc-
tion of new functionality [14], identifying and resolving these problems becomes
critical for the survival of legacy systems.

Requirements

Designs

model capture and anlysis
Code ;

Fig. 1. The Reengineering life cycle

To this end, it is useful to distinguish reverse engineering from reengineer-
ing of software systems [2]. By “reverse engineering”, we mean the process of
analyzing a software system in order to expose its structure and design at a
higher level of abstraction, i.e., the process of extracting various models from
the concrete software system. By “reengineering” we refer to the process of trans-
forming the system to a new one that implements essentially the same functional
requirements, but also enables further development.

The process of reverse- and re-engineering consists of numerous activities,
including architecture and design recovery, test generation, problem detection,
and various high and low-level refactorings. In Figure 1 we see an ideal depiction
of the reverse- and re-engineering life cycle [3,10].

Although the motivations for reengineering a legacy system may vary consid-
erably according to the business needs of the organization, the actual technical
steps taken tend to be very similar. As a consequence, it is possible to iden-
tify a number of generally useful process patterns that one may apply while
reverse- and re-engineering a legacy system. We provide a brief overview of
these patterns in Section 2. By the same token, there exist various tools that
can help support the reengineering process. In Section 3 we present a brief
outline of some of the tools we have developed and applied to various legacy
systems.
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2 Reengineering Patterns

The term “pattern” used in the context of software usually evokes the notion of
“design patterns” — recurring solutions to design problems. Reengineering pat-
terns are not design patterns, but rather process patterns — recurring solutions
to problems that arise during the process of reverse- and re-engineering.

We distinguish patterns from “rules” or “guidelines” because each pattern
must be interpreted in a given context. Patterns are not applied blindly, but en-
tail tradeoffs. Just as one would never deliberately implement a software system
applying all of the GOF patterns [7], one should not blindly apply reengineering
patterns without considering all the consequences.

We were able to mine a large number of reengineering patterns during the
course of FAM0OS, a European project! whose goal was to support the evolu-
tion of first-generation object-oriented software towards object-oriented frame-
works. FAM0OS focussed on methods and tools to analyse and detect design
problems in object-oriented legacy systems, and to migrate these systems to-
wards more flexible architectures. The main results of FAMOOS are summarized
in the FAMOOs Handbook [4] and in the book “Object-Oriented Reengineering
Patterns” (3].

Tests: Your Life Insurance

Detailed Model Capture Migration Strategies
Initial Understanding Detecting Duplicated Code
First Contact Redistribute Responsibilities
Setting Direction Transform Conditionals

to Polymorphism

Fig. 2. Reengineering pattern clusters

In Figure 2 we see how various clusters of reengineering patterns can be
mapped to our ideal reengineering life cycle. Each name represents a collection
of process patterns that can be applied at a particular stage during the reengi-
neering of a legacy system.

Setting Direction contains several patterns to help you determine where to
focus your re- engineering efforts, and make sure you stay on track. First Con-
tact consists of a set of patterns that may be useful when you encounter a
legacy system for the first time. Initial Understanding helps you to develop a
first simple model of a legacy system, mainly in the form of class diagrams.

! ESPRIT Project 21975: “Framework-based Approach for Mastering Object-Oriented
Software Evolution”. www.iam.unibe.ch/~scg/Archive/famoos
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Detailed Model Capture helps you to develop a more detailed model of a partic-
ular component of the system. Tests: Your Life Insurance focusses on the use of
testing not only to help you understand a legacy system, but also to prepare it for
a reengineering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will be
accepted by its users. Detecting Duplicated Code can help you identify locations
where code may have been copied and pasted, or merged from different versions
of the software. Redistribute Responsibilities helps you discover and reengineer
classes with too many responsibilities. Transform Conditionals to Polymorphism
will help you to redistribute responsibilities when an object-oriented design has
been compromised over time.

Since a detailed description of the patterns is clearly out of the scope of a
short paper, let us just briefly consider a single pattern cluster. First Contact
consists of patterns that can be useful when first encountering a legacy system.
There are various forces at play, which one must be conscious of. In particular,
legacy systems tend to be large and complex, so it will be difficult to get an
overview of the system. Time is short, so it is important to gather quality infor-
mation quickly. Furthermore, first impressions are dangerous, so it is important
not to rely on a single source of information.

One has various resources at hand: the source code, the running system, the
users, the maintainers, documentation, the source code repository, the changes
log, the list of bug requests, the test cases, and so on. Even if some of these are
missing or unreliable, one must take care to not reject anything out of hand.

In Figure 3 we see a map of the patterns in this cluster, and how they relate to
each other. As with each pattern cluster, patterns support each other to resolve
the forces at play. The First Contact cluster resolves the forces by balancing
what you learn from the users and maintainers with what you learn from the
source code.

In Figure 4 we see a capsule summary of one of the better-known patterns of
this cluster. The name is typically an action to be performed, that expresses the
key idea of the pattern. Not every pattern is always relevant in every context,
so one must be clear about the intent of each pattern, the problem it solves, the
key idea of the solution, and the tradeoffs entailed. In this particular pattern,
the context of a demo is used as a device to help the user to focus on concrete
rather than abstract qualities of the application, while communicating typical
use cases and scenarios to the engineer. Each pattern may also include hints,
variants, examples, rationale, related patterns, and an indication of what to do
nexrt. Known uses are very important, since only established best practices can
truly be considered “patterns”.

3 Reengineering Tools and Techniques

It is easy to put too much faith into tools. For this reason the reengineering
patterns put more emphasis on process than tools. (As a popular saying puts it:
“A fool with a tool is still a fool.”)



