Robert Gliick
Michael Lowry (Eds.)

Generative _
Programming and
Component Engineering

4th International Conference, GPCE 2005
Tallinn, Estonia, September/October 2005
Proceedings

LNCS 3676

@_ Springer

" “Robert Gliick Michael Lowry (Eds.)

Generative
Programming and
Component Engineering

4th International Conference, GPCE 2005
Tallinn, Estonia, September 29 — October 1, 2005

AR
:533’&*9
-

@ Springer

Volume Editors

Robert Gliick

University of Copenhagen, DIKU, Department of Computer Science
Universitetsparken 1, 2100 Copenhagen, Denmark

E-mail: glueck@acm.org

Michael Lowry

NASA Ames Research Center, M/S 269-2
Moffett Field, CA 94035-1000, USA
E-mail: lowry @email.arc.nasa.gov

i

4 9_
Library of Congtess*Control Number: 2005932566

CR Subject Classification (1998): D.2, D.1, D.3, K.6

ISSN 0302-9743
ISBN-10 3-540-29138-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29138-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11561347 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler ’

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3676

Preface

Generative Programming and Component Engineering (GPCE) is a leading re-
search conference on automatic programming and component engineering. These
approaches to software engineering have the potential to revolutionize software
development as automation and components revolutionized manufacturing. The
conference brings together researchers and practitioners interested in advanc-
ing automation for software development. It is also a premier forum for cross-
fertilization between the programming language and software engineering re-
search communities.

GPCE arose as a joint conference, merging the prior conference on Generative
and Component-Based Software Engineering (GCSE) and the Workshop on Se-
mantics, Applications, and Implementation of Program Generation (SAIG). The
proceedings of the previous GPCE conferences were published in the LNCS series
of Springer as volumes 2487, 2830, and 3286. In 2005 GPCE was co-located with
the International Conference on Functional Programming (ICFP) and the sym-
posium on Trends in Functional Programming (TFP), reflecting the vigorous
interaction between the functional programming and generative programming
research communities. GPCE and ICFP are both sponsored by the Association
for Computing Machinery.

The quality and breadth of the papers submitted to GPCE 2005 was impres-
sive. All 86 papers, including 5 papers for tool demonstrations, were rigorously
reviewed by 17 highly qualified Program Committee members. The members of
the Program Committee first provided in-depth individual reviews of the sub-
mitted papers, and then debated the merits of the papers through an extended
electronic Program Committee meeting. After much (friendly) argument, 25 reg-
ular papers and 2 tool demonstration papers were selected for publication. The
Program Committee provided extensive technical feedback to the authors of the
submitted papers. The conference program was complemented with three invited
talks, three extended tutorials, and three all-day workshops.

The accepted papers are grouped into eight topic areas: aspect-oriented pro-
gramming, component engineering and templates, demonstrations, domain-specific
languages, generative techniques, generic programming, meta-programming and
transformation, and multi-stage programming. The invited talks were from lead-
ing innovators in the field: Oscar Nierstrasz on object-oriented reengineering
patterns, Oege de Moor on the AspectBench compiler for AspectJ, and Bernd
Fischer on certifiable program generation.

The program chairs would like to thank foremost the authors of the submit-
ted papers: their research is the justification for this conference. Both program
chairs were impressed by the expertise and diligence of the Program Committee
members and their co-reviewers. Their technical dedication, as reflected in the
quality of their reviews, was the foundation of the strength of these proceedings.

VI Preface

The general chair, Eugenio Moggi, was tireless in steering the program chairs
towards a technically superb program. The publicity chair, Eelco Visser, went
beyond the call of duty in raising awareness of the conference in the software
engineering and programming languages research communities. Andrew Malton
and Jeff Gray solicited and organized a workshop and tutorial program of interest
to researchers and practitioners alike. Tarmo Uustalu graciously served as local
arrangements chair, providing a hospitable atmosphere in the beautiful venue
of Tallin, Estonia. The paper submissions and the reviewing process were ably
supported by the Web-based EasyChair system (http://www.easychair.org/).
The program chairs would like to extend our appreciation to Andrei Voronkov,
who developed EasyChair and is the leading force behind its continued develop-
ment. His personal attention to our conference greatly facilitated managing the
volume of reviews and discussions amongst the Program Committee. Finally,
we would like to recognize the importance of the gentle guidance of the GPCE
Steering Committee. Their long-term dedication is the core that binds together
this research community.

July 2005 Robert Gliick
Michael Lowry

Organization

General Chair
Eugenio Moggi (Genoa University, Italy)
Program Committee Co-chairs

Robert Gliick (University of Copenhagen, Denmark)
Michael Lowry (NASA Ames Research Center, USA)

Program Committee

Don Batory (University of Texas, USA)

Ira Baxter (Semantic Designs, USA)

Cristiano Calcagno (Imperial College London, UK)

Prem Devanbu (University of California at Davis, USA)

Ulrich Eisenecker (University of Leipzig, Germany)

Tom Ellman (Vassar College, USA)

Robert Filman (NASA Ames Research Center, USA)
Zhenjiang Hu (University of Tokyo, Japan)

Patricia Johann (Rutgers University, USA)

John Launchbury (Galois Connections Inc., USA)
Anne-Francoise Le Meur (University of Science and Technology Lille, France)
Hong Mei (Peking University, China)

Nicolas Rouquette (NASA Jet Propulsion Lab, USA)

William Scherlis (Carnegie Mellon University, USA)

Yannis Smaragdakis (Georgia Institute of Technology, USA)
Walid Taha (Rice University, USA)

Todd Veldhuizen (Chalmers University of Technology, Sweden)

Publicity Chair
Eelco Visser (Utrecht University, The Netherlands)

Workshop and Tutorial Chairs

Andrew Malton (University of Waterloo, Canada)
Jeff Gray (University of Alabama at Birmingham, USA)

Local Arrangements Chair

Tarmo Uustalu (Institute of Cybernetics, Estonia)

VIII Organization

Additional Referees

Alexander Ahern
Robert L. Akers
Olivier Barais

Josh Berdine
Christie Bolton
John Tang Boyland
Dolores Diaz

Dan Dougherty
Laurence Duchien
Bernd Fischer
Aaron Greenhouse
Timothy J. Halloran
William Harrison
Jim Hook

Liwen Huang

Shan Shan Huang
Samuel Kamin
Paul Kelly

Oleg Kiselyov

Julia Lawall
Christopher League
Daan Leijen

Sponsors

Dongxi Liu
Jan-Willem Maessen
Michael Mehlich
Eugenio Moggi
Shin-Cheng Mu
Keisuke Nakano
Matthias Neubauer
Emir Pasalic
Renaud Pawlak
Nicolas Pessemier
Amr Sabry

Isao Sasano

Lionel Seinturier
Douglas Smith
Andreas Speck
Franklyn Turbak
Geoffrey Washburn
Tetsuo Yokoyama
Nobuko Yoshida
Hongjun Zheng
David Zook

GPCE 2005 was sponsored by ACM SIGPLAN, in cooperation with ACM SIG-
SOFT. We gratefully acknowledge the support of Utrecht University in hosting
the conference Web site, and the Institute of Cybernetics, Tallinn, for handling

the local arrangements and registration.

Lecture Notes in Computer Science

For information about Vols. 1-3623

please contact your bookseller or Springer

Vol. 3728: V. Paliouras, J. Vounckx, D. Verkest (Eds.), In-
tegrated Circuit and System Design. XV, 753 pages. 2005.

Vol. 3726: L.T. Yang, O.F. Rana, B. Di Martino, J. Don-
garra (Eds.), High Performance Computing and Com-
muncations. XX VI, 1116 pages. 2005.

Vol. 3718: V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov
(Eds.), Computer Algebra in Scientific Computing. XII,
502 pages. 2005.

Vol. 3717: B. Gramlich (Ed.), Frontiers of Combining Sys-
tems. X, 321 pages. 2005. (Subseries LNAI).

Vol. 3715: E. Dawson, S. Vaudenay (Eds.), Progress in
Cryptology — Mycrypt 2005. XI, 329 pages. 2005.

Vol. 3714: H. Obbink, K. Pohl (Eds.), Software Product
Lines. XIII, 235 pages. 2005.

Vol. 3713: L. Briand, C. Williams (Eds.), Model Driven
Engineering Languages and Systems. XV, 722 pages.
2005.

Vol. 3712: R. Reussner, J. Mayer, J.A. Stafford, S. Over-
hage, S. Becker, P.J. Schroeder (Eds.), Quality of Soft-
ware Architectures and Software Quality. X111, 289 pages.
2005.

Vol. 3711: F. Kishino, Y. Kitamura, H. Kato, N. Nagata
(Eds.), Entertainment Computing - ICEC 2005. XXIV,
540 pages. 2005.

Vol. 3710: M. Bami, I. Cox, T. Kalker, H.J. Kim (Eds.),
Digital Watermarking. XII, 485 pages. 2005.

Vol. 3708: J. Blanc-Talon, W. Philips, D. Popescu, P. Sche-
unders (Eds.), Advanced Concepts for Intelligent Vision
Systems. XXII, 725 pages. 2005.

Vol. 3706: H. Fuks, S. Lukosch, A.C. Salgado (Eds.),
Groupware: Design, Implementation, and Use. XII, 378
pages. 2005.

Vol. 3703: F. Fages, S. Soliman (Eds.), Principles and
Practice of Semantic Web Reasoning. VIII, 163 pages.
200s.

Vol. 3702: B. Beckert (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods. X111, 343 pages.
2005. (Subseries LNAI).

Vol. 3699: C.S. Calude, M.J. Dinneen, G. Paun, M.J.
Pérez-Jiménez, G. Rozenberg (Eds.), Unconventional
Computation. XI, 267 pages. 2005.

Vol. 3698: U. Furbach (Ed.), KI 2005: Advances in Artifi-
cial Intelligence. XIII, 409 pages. 2005. (Subseries LNAI).

Vol. 3697: W. Duch, J. Kacprzyk, E. Oja, S. Zadrozny
(Eds.), Artificial Neural Networks: Formal Models and
Their Applications — ICANN 2005, Part 1. XXXII, 1045
pages. 2005.

Vol. 3696: W. Duch, J. Kacprzyk, E. Oja, S. Zadrozny
(Eds.), Artificial Neural Networks: Biological Inspirations
~ ICANN 2005, Part I. XXX1, 703 pages. 2005.

Vol. 3695: M.R. Berthold, R. Glen, K. Diederichs, O.
Kohlbacher, I. Fischer (Eds.), Computational Life Sci-
ences. XI, 277 pages. 2005. (Subseries LNBI).

Vol. 3694: M. Malek, E. Nett, N. Suri (Eds.), Service Avail-
ability. VIII, 213 pages. 2005.

Vol. 3693: A.G. Cohn, D.M. Mark (Eds.), Spatial Infor-
mation Theory. XII, 493 pages. 2005,

Vol. 3691: A. Gagalowicz, W. Philips (Eds.), Computer
Analysis of Images and Patterns. XIX, 865 pages. 2005.

Vol. 3690: M. Péchouek, P. Petta, L.Z. Varga (Eds.),
Multi-Agent Systems and Applications IV. XVII, 667
pages. 2005. (Subseries LNAI).

Vol. 3687: S. Singh, M. Singh, C. Apte, P. Perner (Eds.),
Pattern Recognition and Image Analysis, Part II. XXV,
809 pages. 2005.

Vol. 3686: S. Singh, M. Singh, C. Apte, P. Perner (Eds.),
Pattern Recognition and Data Mining, Part I. XX VI, 689
pages. 2005.

Vol. 3685: V. Gorodetsky, 1. Kotenko, V. Skormin (Eds.),
Computer Network Security. XIV, 480 pages. 2005.

Vol. 3684: R. Khosla, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part IV. LXXIX, 933 pages. 2005. (Subseries
LNAI).

Vol. 3683: R. Khosla, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part IIl. LXXX, 1397 pages. 2005. (Sub-
series LNAI).

Vol. 3682: R. Khosla, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part II. LXXIX, 1371 pages. 2005. (Sub-
series LNAI).

Vol. 3681: R. Khosla, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part I. LXXX, 1319 pages. 2005. (Subseries
LNAI).

Vol. 3679: S.d.C. di Vimercati, P. Syverson, D. Gollmann
(Eds.), Computer Security — ESORICS 2005. XI, 509
pages. 2005.

Vol. 3678: A. McLysaght, D.H. Huson (Eds.), Compara-
tive Genomics. VIII, 167 pages. 2005. (Subseries LNBI).
Vol. 3677: J. Dittmann, S. Katzenbeisser, A. Uhl (Eds.),
Communications and Multimedia Security. XIII, 360
pages. 2005.

Vol. 3676: R. Gliick, M. Lowry (Eds.), Generative Pro-
gramming and Component Engineering. XI, 448 pages.
2005.

Vol. 3675: Y. Luo (Ed.), Cooperative Design, Visualiza-
tion, and Engineering. XI, 264 pages. 2005.

Vol. 3674: W. Jonker, M. Petkovi¢ (Eds.), Secure Data
Management. X, 241 pages. 2005.

Vol. 3673: S. Bandini, S. Manzoni (Eds.), AI*IA 2005:
Advances in Artificial Intelligence. XIV, 614 pages. 2005.
(Subseries LNAI).

Vol. 3672: C. Hankin, 1. Siveroni (Eds.), Static Analysis.
X, 369 pages. 2005.

Vol. 3671: S. Bressan, S. Ceri, E. Hunt, Z.G. Ives, Z. Bel-
lahséne, M. Rys, R. Unland (Eds.), Database and XML
Technologies. X, 239 pages. 2005.

Vol. 3670: M. Bravetti, L. Kloul, G. Zavattaro (Eds.), For-
mal Techniques for Computer Systems and Business Pro-
cesses. XIII, 349 pages. 2005.

Vol. 3666: B.D. Martino, D. Kranzlmiiller, J. Dongarra
(Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface. XVII, 546 pages. 2005.

Vol. 3665: K. S. Candan, A. Celentano (Eds.), Advances
in Multimedia Information Systems. X, 221 pages. 2005.

Vol. 3664: C. Tiirker, M. Agosti, H.-J. Schek (Eds.), Peer-
to-Peer, Grid, and Service-Orientation in Digital Library
Architectures. X, 261 pages. 2005.

Vol. 3663: W.G. Kropatsch, R. Sablatnig, A. Hanbury
(Eds.), Pattern Recognition. XIV, 512 pages. 2005.

Vol. 3662: C. Baral, G. Greco, N. Leone, G. Terracina
(Eds.), Logic Programming and Nonmonotonic Reason-
ing. XIII, 454 pages. 2005. (Subseries LNAI).

Vol. 3661: T. Panayiotopoulos, J. Gratch, R. Aylett, D.
Ballin, P. Olivier, T. Rist (Eds.), Intelligent Virtual Agents.
X111, 506 pages. 2005. (Subseries LNAI).

Vol. 3660: M. Beigl, S. Intille, J. Rekimoto, H. Tokuda
(Eds.), UbiComp 2005: Ubiquitous Computing. XVII,
394 pages. 2005.

Vol. 3659: J.R. Rao, B. Sunar (Eds.), Cryptographic Hard-
ware and Embedded Systems — CHES 2005. XIV, 458
pages. 2005.

Vol. 3658: V. Matousek, P. Mautner, T. Pavelka (Eds.),
Text, Speech and Dialogue. XV, 460 pages. 2005. (Sub-
series LNAI).

Vol. 3657: F.S. de Boer, M.M. Bonsangue, S. Graf, W.-P.
de Roever (Eds.), Formal Methods for Components and
Objects. VIII, 325 pages. 2005.

Vol. 3656: M. Kamel, A. Campilho (Eds.), Image Analysis
and Recognition. XXIV, 1279 pages. 2005.

Vol. 3655: A. Aldini, R. Gorrieri, F. Martinelli (Eds.),
Foundations of Security Analysis and Design II1. VII, 273
pages. 2005.

Vol. 3654: S. Jajodia, D. Wijesekera (Eds.), Data and Ap-
plications Security XIX. X, 353 pages. 2005.

Vol. 3653: M. Abadi, L. de Alfaro (Eds.), CONCUR 2005
— Concurrency Theory. XIV, 578 pages. 2005.

Vol. 3652: A. Rauber, S. Christodoulakis, A M. Tjoa

(Eds.), Research and Advanced Technology for Digital
Libraries. X VIII, 545 pages. 2005.

Vol. 3650: J. Zhou, J. Lopez, R.H. Deng, F. Bao (Eds.),
Information Security. XII, 516 pages. 2005.

Vol. 3649: W.M. P. van der Aalst, B. Benatallah, F. Casati,

F. Curbera (Eds.), Busi Process M XII,
472 pages. 2005.

Ryl

Vol. 3648: J.C. Cunha, P.D. Medeiros (Eds.), Euro-Par
2005 Parallel Processing. XXXVI, 1299 pages. 2005.

Vol. 3646: A. F. Famili, J.N. Kok, J.M. Pefia, A. Siebes,
A. Feelders (Eds.), Advances in Intelligent Data Analysis
VI. X1V, 522 pages. 2005.

Vol. 3645: D.-S. Huang, X.-P. Zhang, G.-B. Huang (Eds.),
Advances in Intelligent Computing, Part II. XIII, 1010
pages. 2005.

Vol. 3644: D.-S. Huang, X.-P. Zhang, G.-B. Huang (Eds.),
Advances in Intelligent Computing, Part I. XXVII, 1101
pages. 2005.

Vol. 3643: R. Moreno Diaz, F. Pichler, A. Quesada Aren-
cibia (Eds.), Computer Aided Systems Theory — EURO-
CAST 2005. X1V, 629 pages. 2005.

Vol. 3642: D. Slezak, J. Yao, J.F. Peters, W. Ziarko, X. Hu
(Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granu-
lar Computing, Part II. XXIII, 738 pages. 2005. (Subseries
LNAI).

Vol. 3641: D. Slezak, G. Wang, M. Szczuka, 1. Diintsch,
Y. Yao (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing, Part I. XXIV, 742 pages. 2005. (Sub-
series LNAI).

Vol. 3639: P. Godefroid (Ed.), Model Checking Software.
X1, 289 pages. 2005.

Vol. 3638: A. Butz, B. Fisher, A. Kriiger, P. Olivier (Eds.),
Smart Graphics. XI, 269 pages. 2005.

Vol. 3637: J. M. Moreno, J. Madrenas, J. Cosp (Eds.),
Evolvable Systems: From Biology to Hardware. XI, 227
pages. 2005.

Vol. 3636: M.J. Blesa, C. Blum, A. Roli, M. Sampels
(Eds.), Hybrid Metaheuristics. X1, 155 pages. 2005.

Vol. 3634: L. Ong (Ed.), Computer Science Logic. X1, 567
pages. 2005.

Vol. 3633: C. Bauzer Medeiros, M. Egenhofer, E. Bertino
(Eds.), Advances in Spatial and Temporal Databases. XIII,
433 pages. 2005.

Vol. 3632: R. Nieuwenhuis (Ed.), Automated Deduction
— CADE-20. XIII, 459 pages. 2005. (Subseries LNAI).

Vol. 3631:J. Eder, H.-M. Haav, A. Kalja, J. Penjam (Eds.),
Advances in Databases and Information Systems. XIII,
393 pages. 2005.

Vol. 3630: M.S. Capcarrere, A.A. Freitas, P.J. Bentley,
C.G. Johnson, J. Timmis (Eds.), Advances in Artificial
Life. XIX, 949 pages. 2005. (Subseries LNAI).

Vol. 3629: J.L. Fiadeiro, N. Harman, M. Roggenbach, J.
Rutten (Eds.), Algebra and Coalgebra in Computer Sci-
ence. XI, 457 pages. 2005.

Vol. 3628: T. Gschwind, U. ABmann, O. Nierstrasz (Eds.),
Software Composition. X, 199 pages. 2005.

Vol. 3627: C. Jacob, M.L. Pilat, P.J. Bentley, J. Timmis
(Eds.), Artificial Immune Systems. XII, 500 pages. 2005.

Vol. 3626: B. Ganter, G. Stumme, R. Wille (Eds.), Formal
Concept Analysis. X, 349 pages. 2005. (Subseries LNAI).

Vol. 3625: S. Kramer, B. Pfahringer (Eds.), Inductive
Logic Programming. XIII, 427 pages. 2005. (Subseries
LNAI).

Vol. 3624: C. Chekuri, K. Jansen, J.D. P. Rolim, L. Tre-
visan (Eds.), Approximation, Randomization and Combi-
natorial Optimization. X1, 495 pages. 2005.

Table of Contents

Invited Talks

Object-Oriented Reengineering Patterns — An Overview
Oscar Nierstrasz, Stéphane Ducasse, Serge Demeyer................ 1

abc: The AspectBench Compiler for AspectJ
Chris Allan, Pavel Avgustinov, Aske Simon Christensen,
Laurie Hendren, Sascha Kuzins, Jennifer Lhotdk, Ondrej Lhotdk,
Oege de Moor, Damien Sereni, Ganesh Sittampalam, Julian Tibble ... 10

Certifiable Program Generation
Ewen Denney, Bernd Fischero, 17

Domain-Specific Language

A Generative Programming Approach to Developing DSL Compilers
Charles Consel, Fabien Latry, Laurent Réveillere, Pierre Cointe 29

Efficient Code Generation for a Domain Specific Language
Andrew Moss, Henk Muller @ @ i, 47

On Domain-Specific Languages Reengineering
Christophe Alias, Denis Barthou, 63

Bossa Nova: Introducing Modularity into the Bossa Domain-Specific
Language

Julia L. Lawall, Hervé Duchesne, Gilles Muller,

Anne-Frangoise Le Meurueuiiineiieinenenennann, 78

Aspect-Oriented Programming

AOP++: A Generic Aspect-Oriented Programming Framework
in C++
Zhen Yao, Qi-long Zheng, Guo-liang Chen 94

Model Compiler Construction Based on Aspect-Oriented Mechanisms
Naoyasu Ubayashi, Tetsuo Tamai, Shinji Sano, Yusaku Maeno,
Satoshi Murakamicue it 109

FeatureC++: On the Symbiosis of Feature-Oriented and
Aspect-Oriented Programming
Sven Apel, Thomas Leich, Marko Rosenmiiller, Gunter Saake 125

X Table of Contents

Shadow Programming: Reasoning About Programs Using Lexical Join

Point Information
Pengcheng Wu, Karl Lieberherr i, 141

Meta-programming and Transformation

Generalized Type-Based Disambiguation of Meta Programs with
Concrete Object Syntax
Martin Bravenboer, Rob Vermaas, Jurgen Vinju, Eelco Visser 157

A Versatile Kernel for Multi-language AOP
Eric Tanter, Jacques NOYE 173

Semi-inversion of Guarded Equations
Torben 4. MOGENSEN vv ottt e e 189

Generative Techniques I

A Generative Programming Approach to Interactive Information
Retrieval: Insights and Experiences
Saverio Perugini, Naren Ramakrishnan 205

Optimizing Marshalling by Run-Time Program Generation
Bars Aktemur, Joel Jones, Samuel Kamin, Lars Clausen 221

Applying a Generative Technique for Enhanced Genericity and
Maintainability on the J2EE Platform
Yang Jun, Stan Jarzabek.......... 237

Multi-stage Programming

Multi-stage Programming with Functors and Monads: Eliminating
Abstraction Overhead from Generic Code
Jacques Carette, Oleg Kiselyov 256

Implicitly Heterogeneous Multi-stage Programming
Jason Eckhardt, Roumen Kaiabachev, Emir Pasalié, Kedar Swadj,
Walid Taha ... 275

Generative Techniques II

Source-Level Optimization of Run-Time Program Generators
Samuel Kamin, Baris Aktemur, Philip Morton. 293

Statically Safe Program Generation with SafeGen
Shan Shan Huang, David Zook, Yannis Smaragdakis................ 309

Table of Contents

A Type System for Reflective Program Generators
Dirk Draheim, Christof Lutteroth, Gerald Weber

Sorting Out the Relationships Between Pairs of Iterators, Values, and
References
Krister Ahlander i

Components and Templates

Preprocessing Eden with Template Haskell
Steffen Priebet

Syntactic Abstraction in Component Interfaces
Ryan Culpepper, Scott Owens, Matthew Flatt

Component-Oriented Programming with Sharing: Containment is Not
Ownership
Daniel Hirschkoff, Tom Hirschowitz, Damien Pous, Alan Schmitt,
Jean-Bernard Stefani

Generic Programming

Language Requirements for Large-Scale Generic Libraries
Jeremy Siek, Andrew Lumsdaine

Mapping Features to Models: A Template Approach Based on
Superimposed Variants
Krzysztof Czarnecki, Michat Antkiewiczo v .

Demonstrations
Developing Dynamic and Adaptable Applications with CAM/DAOQOP:
A Virtual Office Application

Mbdénica Pinto, Daniel Jiménez, Lidia Fuentes

Metamodeling Made Easy — MetaEdit+
Risto Pohjonen «xies sunsas snsms cosms smimsaasmasas dnims dhims imins

Author Index e

XI

Object-Oriented Reengineering Patterns
An Overview

Oscar Nierstrasz!, Stéphane Ducasse?, and Serge Demeyer?

! Software Composition Group, University of Bern, Switzerland
? Laboratoire d’Informatique, Systémes, Traitement de 'Information,
et de la Connaissance, Université de Savoie, France
3 Lab On REengineering, University of Antwerp, Belgium

Abstract. Successful software systems must be prepared to evolve or
they will die. Although object-oriented software systems are built to
last, over time they degrade as much as any legacy software system. As
a consequence, one must invest in reengineering efforts to keep further
development costs down. Even though software systems and their busi-
ness contexts may differ in countless ways, the techniques one uses to
understand, analyze and transform these systems tend to be very sim-
ilar. As a consequence, one may identify various reengineering patterns
that capture best practice in reverse- and re-engineering object-oriented
legacy systems. We present a brief outline of a large collection of these
patterns that have been mined over several years of experience with
object-oriented legacy systems, and we indicate how some of these pat-
terns can be supported by appropriate tools.

1 Introduction

A legacy software system is a system that you have inherited and is valuable to
you. Successful (i.e., valuable) software systems typically evolve over a number of
years as requirements evolve and business needs change. This leads to the well-
documented phenomenon that such systems become more compler over time,
and become progressively harder to maintain, unless special measures are taken
to simplify their architecture and design [13].

Numerous problems manifest themselves as a legacy system begins to turn
into a burden. First of all, knowledge about the system deteriorates. Documen-
tation is often missing or obsolete. The original developers or users may have
left the project. As a consequence, inside knowledge about the system may be
missing. Automated tests that document how the system functions are rarely
available.

Second, the process for implementing changes ceases to be effective. Simple
changes take too long. A continuous stream of bug fixes is common. Maintenance
dependencies make it difficult to implement changes or to separate products.

Finally, the code itself will exhibit various disagreeable symptoms. Large
amounts of duplicated code are common, as are other “code smells” such as
violations of encapsulation, large, procedural classes, and explicit type checks.

R. Gliick and M. Lowry (Eds.): GPCE 2005, LNCS 3676, pp. 1-9, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 O. Nierstrasz, S. Ducasse, and S. Demeyer

Concretely, the code will manifest architectural problems such as improper
layering and lack of modularity, as well as design problems such as misuse of
inheritance, missing inheritance and misplaced operations. Excessive build times
are also a common sign of architectural decay.

Since the bulk of a (successful) software system’s life cycle is known to reside
in maintenance, and “maintenance” is known to consist largely in the introduc-
tion of new functionality [14], identifying and resolving these problems becomes
critical for the survival of legacy systems.

Requirements

Designs

model capture and anlysis
Code ;

Fig. 1. The Reengineering life cycle

To this end, it is useful to distinguish reverse engineering from reengineer-
ing of software systems [2]. By “reverse engineering”, we mean the process of
analyzing a software system in order to expose its structure and design at a
higher level of abstraction, i.e., the process of extracting various models from
the concrete software system. By “reengineering” we refer to the process of trans-
forming the system to a new one that implements essentially the same functional
requirements, but also enables further development.

The process of reverse- and re-engineering consists of numerous activities,
including architecture and design recovery, test generation, problem detection,
and various high and low-level refactorings. In Figure 1 we see an ideal depiction
of the reverse- and re-engineering life cycle [3,10].

Although the motivations for reengineering a legacy system may vary consid-
erably according to the business needs of the organization, the actual technical
steps taken tend to be very similar. As a consequence, it is possible to iden-
tify a number of generally useful process patterns that one may apply while
reverse- and re-engineering a legacy system. We provide a brief overview of
these patterns in Section 2. By the same token, there exist various tools that
can help support the reengineering process. In Section 3 we present a brief
outline of some of the tools we have developed and applied to various legacy
systems.

Object-Oriented Reengineering Patterns — An Overview 3
2 Reengineering Patterns

The term “pattern” used in the context of software usually evokes the notion of
“design patterns” — recurring solutions to design problems. Reengineering pat-
terns are not design patterns, but rather process patterns — recurring solutions
to problems that arise during the process of reverse- and re-engineering.

We distinguish patterns from “rules” or “guidelines” because each pattern
must be interpreted in a given context. Patterns are not applied blindly, but en-
tail tradeoffs. Just as one would never deliberately implement a software system
applying all of the GOF patterns [7], one should not blindly apply reengineering
patterns without considering all the consequences.

We were able to mine a large number of reengineering patterns during the
course of FAM0OS, a European project! whose goal was to support the evolu-
tion of first-generation object-oriented software towards object-oriented frame-
works. FAM0OS focussed on methods and tools to analyse and detect design
problems in object-oriented legacy systems, and to migrate these systems to-
wards more flexible architectures. The main results of FAMOOS are summarized
in the FAMOOs Handbook [4] and in the book “Object-Oriented Reengineering
Patterns” (3].

Tests: Your Life Insurance

Detailed Model Capture Migration Strategies
Initial Understanding Detecting Duplicated Code
First Contact Redistribute Responsibilities
Setting Direction Transform Conditionals

to Polymorphism

Fig. 2. Reengineering pattern clusters

In Figure 2 we see how various clusters of reengineering patterns can be
mapped to our ideal reengineering life cycle. Each name represents a collection
of process patterns that can be applied at a particular stage during the reengi-
neering of a legacy system.

Setting Direction contains several patterns to help you determine where to
focus your re- engineering efforts, and make sure you stay on track. First Con-
tact consists of a set of patterns that may be useful when you encounter a
legacy system for the first time. Initial Understanding helps you to develop a
first simple model of a legacy system, mainly in the form of class diagrams.

! ESPRIT Project 21975: “Framework-based Approach for Mastering Object-Oriented
Software Evolution”. www.iam.unibe.ch/~scg/Archive/famoos

4 O. Nierstrasz, S. Ducasse, and S. Demeyer

Detailed Model Capture helps you to develop a more detailed model of a partic-
ular component of the system. Tests: Your Life Insurance focusses on the use of
testing not only to help you understand a legacy system, but also to prepare it for
a reengineering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will be
accepted by its users. Detecting Duplicated Code can help you identify locations
where code may have been copied and pasted, or merged from different versions
of the software. Redistribute Responsibilities helps you discover and reengineer
classes with too many responsibilities. Transform Conditionals to Polymorphism
will help you to redistribute responsibilities when an object-oriented design has
been compromised over time.

Since a detailed description of the patterns is clearly out of the scope of a
short paper, let us just briefly consider a single pattern cluster. First Contact
consists of patterns that can be useful when first encountering a legacy system.
There are various forces at play, which one must be conscious of. In particular,
legacy systems tend to be large and complex, so it will be difficult to get an
overview of the system. Time is short, so it is important to gather quality infor-
mation quickly. Furthermore, first impressions are dangerous, so it is important
not to rely on a single source of information.

One has various resources at hand: the source code, the running system, the
users, the maintainers, documentation, the source code repository, the changes
log, the list of bug requests, the test cases, and so on. Even if some of these are
missing or unreliable, one must take care to not reject anything out of hand.

In Figure 3 we see a map of the patterns in this cluster, and how they relate to
each other. As with each pattern cluster, patterns support each other to resolve
the forces at play. The First Contact cluster resolves the forces by balancing
what you learn from the users and maintainers with what you learn from the
source code.

In Figure 4 we see a capsule summary of one of the better-known patterns of
this cluster. The name is typically an action to be performed, that expresses the
key idea of the pattern. Not every pattern is always relevant in every context,
so one must be clear about the intent of each pattern, the problem it solves, the
key idea of the solution, and the tradeoffs entailed. In this particular pattern,
the context of a demo is used as a device to help the user to focus on concrete
rather than abstract qualities of the application, while communicating typical
use cases and scenarios to the engineer. Each pattern may also include hints,
variants, examples, rationale, related patterns, and an indication of what to do
nexrt. Known uses are very important, since only established best practices can
truly be considered “patterns”.

3 Reengineering Tools and Techniques

It is easy to put too much faith into tools. For this reason the reengineering
patterns put more emphasis on process than tools. (As a popular saying puts it:
“A fool with a tool is still a fool.”)

