MICROBOOK:

DATABASE

“MANAGEMENT
FORTHE APPLEI

hv Ted LeWis

MICROBOOK:

Database Management
for the Apple® II Computer

T G. Lewis

r

dilithium Press
Beaverton, Oregon

©Copyright, dilithium Press, 1982

All rights reserved. No part of this book may be reproduced in
any form or by any means, electronic or mechanical, includ-
ing photocopying, recording or by any information storage
and retrieval system without permission in writing from the
publisher, with the following two exceptions: any material
may be copied or transcribed for the non-profit use of the pur-
chaser; and material (not to exceed 300 words and one figure)
may be quoted in published reviews of this book.

10 9 8 7 6 5 4 3 2

Library of Congress Cataloging in Publication Data

Lewis, T.G. (Theodore Gyle), 1941-
MICROBOOK: database management for the Apple II
computer.

Includes index.

1. Apple II (Computer)—Programming. 2. MICROBOOK
(Computer system) 3. Data base management. 4. PASCAL
(Computer program language) I. Title.

QA76.8.A662L48 001.64'2 82-7457
ISBN 0-88056-072-X (pbk.) AACR2

Cover: Anton C. Kimball

Printed in the United States of America
dilithium Press

P.O. Box 606

Beaverton, Oregon 97075

Apple® is a registered trademark of Apple Computer.

MICROBOOK:

Database Management
for the Apple® II Computer

Preface

MICROBOOK started as a research proiect¥n database de-
sign and implementation at Oregon State Univetsity. The first
version of this experimental system grew from lectures given
by the author into a crude database system running on the Ap-
ple II computer. During the summer of 1981, the author re-
designed and re-implemented the experimental version to
make it easier to use and faster to run.

My purpose in publishing this book and the associated pro-
grams is to make the MICROBOOK system widely available
at a low cost to microcomputer users. In this spirit, the pro-
gram diskettes are also available at minimal cost from the
publisher. These programs are complete and ready to run.
They were tested over a one-year period before they were
made available to the public. However, should you find new
bugs, please report them so they can be eliminated.

I would like to thank my typist, Donna Lee Norvell-Race for
preparing this manuscript, and my publisher, Merl Miller for
his support in making MICROBOOK generally available.

T G. Lewis
May 1982

vi MICROBOOK

AN IMPORTANT NOTE

The publisher and author have made every effort to assure
that the computer programs and programming information in
this publication are accurate and complete. However, this
publication is prepared for general readership, and neither
the publisher nor the authors have any knowledge about or
ability to control any third party’s use of the programs and
programming information. There is no warranty or represen-
tation by either the publisher or the authors that the programs
or programming information in this book will enable the
reader or user to achieve any particular result.

The programs in this book are available on diskette from
dilithium Software, a division of dilithium Press. To order the
software please use the order form in the back of this book.

Contents

. WHAT IS A DATABASE SYSTEM? .vov oo 1
1.1 ThePartsofaDBMS e 1
1.2 PhysicalModels........................... 1
1.3 LogicalModels. 3
1.4 QueryLanguages.......................... 5

9

9

2.2 How Does MICROBOOK Work? 9
2.3 How is MICROBOOK Used? 12
2.4 What Can MICROBOOKDo? 13
. INTRODUCTION TO MICROBOOK 15
3.1 Hardware and Software Requirements 15
3.2 MICROBOOK System Disks. 15
3.3 Starting the MICROBOOK System 18
3.4 MICROBOOK Command Summary 19
. C(REATEing A DATABASE LIBRARY 23
4.1 The Purpose of C(REATE 23
4.2 AnIllustration of C(REATE. 23
4.3 Limitation of MICROBOOK 27
. A(DDing ABOOK TO THE LIBRARY 29
5.1 BookNames.............................. 29
5.2 Password Protection 29

53 Example 30

viii

10.

11.

12.

13.

MICROBOOK

. F(ORMS INPUTing TOA CHAPTER 33
6.1 The Purposeof FIORM 33
6.2 Rulesof Forms 33
6.3 ANEXample : . covivwms smassommscnws smua o 34
6.4 How FfJORMWorks. 40
E(NTER PAGESINTO ACHAPTER.............. 45
7.1 The Purpose of E(NTER 45
7.2 Example 45
. BLROWSEing THELIBRARY 51
8.1 The Purpose of BIROWSE 51
8.2 The Browse Function Commands 51
8.3 Exception Conditions 53
8.4 ANEXAMPIE . i vuv vuws v swossmuss vmes goms o 53
EX(ECUTEing THE QUERY PROCESSOR 65
9.1 The Purpose of QUERY 65
9.2 HowtoUse QUERY 65
9.3 The QUERY Language 69
9.4 Structure of the QUERY Language............ 70
9.5 Statement Summary 75
9.6 Illustrations:ooeivasesvuesinisasn, 76
COP(Ying THE LIBRARY TO ANOTHERDISK 79
10.1 The Purposeof COP(Y 79
10.2 HowtoUse COP(Y 79
MICROBOOKEXTENSIONS 85
11.1 The Purpose of MICROBOOK Extensions. 85
11.2 How to Use Unit MICROBOOK 85
11.3 Summary of MICROBOOK Routines 86
114 AnExample 89
AN EXAMPLE: ACCOUNTS RECEIVABLE. 91
12.1 SettingUptheForms...................... 91
12.2 QUERY Processing 97
PROGRAM LISTING FOR MICROBOOK 103
13.1 Overview 103
13,2 Didta StFUCHUTE . o wws soms samis swms smus snmes 104
13.3 Modify/Convert 106

134 Listing. i 109

Contents ix

14. PROGRAM LISTING FORUNIT 235
141 Overview e 235
142 Listing. 237

15. PROGRAM LISTING FORQUERY 283
15.1 OVerview 283
15.2 Listing. 285
MICROBOOK Procedure Structure 305

What Is a
Database System?

1.1 THE PARTS OF A DBMS
A DBMS (database management system) is a collection of

programs which store, retrieve, and process data stored in
files. More importantly, a DBMS encompasses a unified, in-
tegrated model of file storage and its corresponding retrieval in
order to reduce the labor associated with processing large
amounts of data.

This definition of a DBMS may seem a bit abstract, so
suppose we look at each part of a DBMS before explaining the
details. A DBMS typically includes programs for the
following:

* An integrated, unified collection of files. The integrated and
unified collection of files is often called the physical model of
the database.

e An integrated, unified view of the physical database. The
user'’s view is often called a schema or, as we will call it, a
logical model of the database. The logical model is how users
see the database.

® Query language for processing inquiries from users. These
inquiries typically consist of information retrieval or
searches for information via a key or collection of keys.

¢ Input/Output control. Typical DBMS's include input and
output control for obvious purposes of data entry and report
writing.

1.2 PHYSICAL MODELS
The underlying physical model of a DBMS depends highly
on the logical level model. However, nearly all DBMS's must

2 MICROBOOK

organize file structures in a manner which leads to (1) high
speed retrieval, (2) keyed access on one or more keys, and
(3) proper file maintenance.

A common technique for high speed retrieval is called
hashing or key-to-address transformation. Hashing is used to
calculate the location of a piece of information in the database
given its key. For example, if a mailing list consisting of name,
address, and zipcode were accessed by the name (as a key),
we would need to hash the name (alphabetic string) into the
corresponding disk file location (number) before we could
retrieve the address and zipcode information.

Unfortunately, hashing does not typically provide for rapid
access to files which contain multiple-keyed information, nor
does hashing facilitate good file maintenance practices. The
high speed retrieval of hashing can be used in only the most
special cases.

The most flexible and powerful physical level mode of a
database is the B-tree structure. A B-tree index file is a tree-
structured file containing the values of all keys to the informa-
tion stored in a data file. Each access to the information stored
in the database must first access a B-tree index file to find the
location of the information. In fact, an access to the B-tree in-
dex file is required for every key used to make a retrieval.

Figure 1.1 shows the B-tree index files as triangular objects
while the file containing a record of information is shown as a
rectangle. Notice that one B-tree index file is used for each
key.

A B-tree index file structure also has the advantage that all
entries (keys) are stored sorted in alphabetical and/or
numerical order. This means we can easily retrieve the
records in Figure 1.1 by name, zipcode, or age in order from
smallest to largest. Hence, JONES, LEWIS, and SMITH are ac-
cessed in alphabetical order resulting in records #2, #0, and #1
being retrieved.

MICROBOOK employs a B-tree physical model so that
every key in the database is stored in a B-tree index file as
well as some master file. In fact, a MICROBOOK database
may consist of dozens of B-tree index files, one for each access
key needed by the user.

We will not delve into the inner workings of B-tree file
structures. For a more detailed explanation the reader is re-

What Is a Database System? 3

NAME

MASTER
Jones, Lewis, Smith Name = Lewis
— } T T Zip = 97330 | Record #0
3 Age =39
£f Name = Smith
—ﬂ\——fw———f Zip = 87360 | Record #1
Age =42
Name = Jones
Zip = 01563 | Record #2
01563, 87360, 97330 L Age =8
L [
<
<
>
AGE
8, 39, 42

—

Figure 1.1 Indexed access to multiple-key file

ferred to the author's book, Pascal Programming For the Apple,
Reston Books, 1981. However, programs for building and ac-
cessing keys stored in a B-tree index file are given in this
book. See the program listings.

1.3 LOGICAL MODELS

The logical model or logical schema of a database system is
the user-perceived structure of the DBMS. It is independent of
the physical database and in a way it covers up the physical
structure so the user need not think in terms of hashing or
B-trees.

4 MICROBOOK

There are three general approaches to designing a logical
database:

HIERARCHICAL: Information is viewed as a hierarchical
structure with a "top” and "bottom."” An example of this view
is shown in Figure 1.2(a).

NETWORK: Information is viewed as a network of interact-
ing structures with no apparent structure. This is il-
lustrated by the network of Figure 1.2(b).

RELATIONAL: Information is viewed as a collection of tables
called relations. This is shown by example in Figure 1.2(c).

(a) Hierarchical

Company Z

]

[Dept: Engineering] r Dept: Financej [Dept: Production 1

[[
[Name: Lewisj r Name: Smith I

|: Zip = 97330 b Zip = 87360 Zip = 01563
Age = 39 Age = 42 Age = 8
(b) Network
Name: Lewis L ll)ept.
Engineering
Company
z
Dept |
Production
(c) Relational
Company Z
Name: Dept Age Zip
Lewis Engr. 39 97330
Smith Engr. 42 87360
Jones Prod. 8 01563

Figure 1.2 Three logical models

What Is a Database System? 5

In the hierarchical view every employee is part of a depart-
ment. Therefore, to access information about an employee,
we must search down through the levels of the hierarchy. Fur-
thermore, to retrieve other employees in the same depart-
ment, we can quickly locate them by searching down to the
DEPT level. However, to retrieve all employees of the same
age, for example, we may need to search the entire hierarchi-
cal structure.

The network view uses links (pointers, as shown by arrows)
to associate properties of employees with departments, each
other, and so forth. The network view is quite flexible due to
the arbitrary linking, but it is not easily implemented at the
physical level. Therefore, the network view is rarely em-
ployed in practical DBMS's.

The relational view offers the most elegant and simple solu-
tion to a DBMS logical organization. Each relation is very sim-
ilar to a table as shown in Figure 1.2(c). The labeled columns
are called domains and the rows are called tuples. We could re-
trieve all employees in the same department by searching the
domain equal to "ENGR", in Figure 1.2(c). Furthermore, we
could retrieve all information associated with an employee by
reading a tuple from the relation, e.g.,, LEWIS, ENGR, 39,
97330. Hence, a tuple closely corresponds to the information
stored in an ordinary file.

Relational DBMS's are popular because they have such a
simple logical structure. However, there are some kinds of
processing that a relational DBMS cannot easily perform. For
this reason we have adopted a combination of both relational
and hierarchical structures for use in MICROBOOK.

1.4 QUERY LANGUAGES

The form of a DBMS query language will conform to the
form of its logical view. Thus, a hierarchical query will use
tree-searching to locate and output information stored in the
hierarchy. For example, the System 2000 query language uses
commands to establish a trace through the hierarchy as shown
in Figure 1.3(a) and as governed by the query.

The QUALIFY command derives a trace or path from top-
to-bottom as shown in Figure 1.3(a). The PRINT statement
causes the path to be used to find NAME, AGE, and _ZIP, and
then print them.

6 MICROBOOK

(a) System 2000 Query Qualification (trace).

l

Dept = ENGR

Zip = 97330
Age = 39

(b) Relational Query

LEWIS ENGR 39 97330

(c) Microbook Query (Turn to correct page in the book)

Company Z

Figure 1.3 Query processing

This approach is used in MICROBOOK to browse the data-
base. However, the simplicity and convenience of a relational
query language is needed in more sophisticated processing.
Therefore, MICROBOOK employs a very high-level query
language much like the query language of INGRES. Here is an
example of an INGRES query:

RANGE OF T IS COMPANY
RETRIEVE (T. ALL) WHERE NAME ="LEWIS"

The INGRES query above uses keyword ALL to abbreviate
the names of all domains in the tuple corresponding to
"LEWIS". This has a corresponding keyword in the Query
Language Processor of MICROBOOK. In MICROBOOK we
simply enter the statement

What Is a Database System? 7

FOR *NAME ="LEWIS" to "LEWIS" DO;
2.

L

END :

This statement causes all records with NAME equal to
"LEWIS" to be displayed on the screen of the computer. For
more details on the Query Language Processor turn to
Chapter 9, which describes this system. Also, the Pascal pro-
gram for implementing QUERY can be found at the end of
this book.

In the following chapters we will discuss and illustrate by
example the MICROBOOK database system implemented on
the Apple II microcomputer. All programs (source and object)
can be obtained by ordering them from the publisher. See the
ordering card attached to this book.

MICROBOOK

