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Editorial Policy

for the publication of monographs

In what follows all references to monographs, are applicable also to multiauthorship
volumes such as seminar notes.

§ 1. Lecture Notes aim to report new developments - quickly. informally, and at a high
level. Monograph manuscripts should be reasonably self-contained and rounded off.
Thus they may, and often will, present not only results of the author but also related work
by other people. Furthermore, the manuscripts should provide sufficient motivation,
examples and applications. This clearly distinguishes Lecture Notes manuscripts from
journal articles which normally are very concise. Articles intended for a journal but too
long to be accepted by most journals, usually do not have this ““lecture notes™ character.
For similar reasons it is unusual for Ph. D. theses to be accepted for the Lecture Notes
series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted (preferably in
duplicate) either to one of the series editors or to Springer- Verlag, Heidelberg . These
proposals are then refereed. A final decision concerning publication can only be made
on the basis of the complete manuscript, but a preliminary decision can often be based
on partial information: a fairly detailed outline describing the planned contents of each
chapter, and an indication of the estimated length, a bibliography. and one or two sample
chapters - or a first draft of the manuscript. The editors will try to make the preliminary
decision as definite as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at least 100

pages of scientific text and should include

- a table of contents:

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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INTRODUCTION

Ce volume contient deux des cours donnés a I'Ecole d'Eté de Calcul
des Probabilités de Saint-Flour du ler au 18 Juillet 1990.

Nous avons choisi de les publier sans attendre le troisiéme cours,
"Function Estimation and the White Noise Model" de Monsieur DONOHO,
dont la rédaction n'est pas encore compleétement achevée et figurera dans
le volume suivant.

Nous remercions les auteurs qui ont effectué un gros travail de
rédaction définitive qui fait de leurs cours un texte de référence.

L'Ecole a rassemblé soixante six participants dont 32 ont présenté,
dans un exposé, leur travail de recherche.

On trouvera ci-dessous la liste des participants et de ces exposés
dont un résumé pourra é€tre obtenu sur demande.

Afin de faciliter les recherches concernant les écoles antérieures,
nous redonnons ici le numéro du volume des "Lecture Notes" qui leur est
consacré

Lecture Notes in Mathematics
1971 : n® 307 - 1973 : n° 390 - 1974 : n® 480 - 1975 : n° 539 -
1976 : n® 598 - 1977 : n® 678 - 1978 : n° 774 - 1979 : n° 876 -
1980 : n® 929 - 1981 : n° 976 - 1982 : n® 1097 - 1983 : n°® 1117 -
1984 : n° 1180 - 1985 - 1986 et 1987 : n° 1362 - 1988 : n° 1427 -
1989 : n°® 1464

Lecture Notes in Statistics
1986 : n° 50
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Introduction.

We consider two classes of asymptotic problems concerning semi-linear
parabolic equations. The common element in both these classes-is not ‘only the
connections with semi-linear PDE's, but the utilization of different kinds of
limit theorems for random processes and fields. The limit theorems for large
deviations are especially useful in the problems under consideration.

It is well known that a Markov process X with continuous trajectories

t
can be connected with any second order elliptic, maybe degenerate, operator
1 5oy 8% 'y 3
L = 5 Y oav(x) ____T5+ ¥ b (x) = The most convenient, but not unique,
i, Jj=1 ax ax i=1 ax

way to construct this process is given by stochastic differential equations.
The solutions of the natural boundary problems for L or of the initial-
boundary problems for the operator gf"L can be written as expectations of
the proper functionals of the process Xt' These expectations are often
called functional integrals. They, together with the stochastic equations,
give more or less in an explicit way the dependence of the solutions on the
coefficients of operator or on initial-boundary conditions. This makes the
probabilistic representations very convenient instruments for studying the
PDE’s. The probabilistic approach turns out to be especially useful in many
asymptotic problems for PDE’s. Limit theorems, which is a traditional area of
probability theory, help to solve the asymptotic problems for PDE’s.

The probabilistic approach turns out to be useful for nonlinear second
order parabolic equations, too.

The first class of problems which we consider here concerns some
asymptotic problems for semi-linear parabolic equations and systems of such
equations. The main attention is paid to wave front propagation in reaction-
diffusion equations (RDE’'s) and systems (see, for example, [20]).

By an RDE we mean one equation or a system of equations of the following

form:
9 o L u (t,x)+f (x,u u ) xeDCR, t>o0
at k'k 7’ k7 ’ - ' !
(0.1)
uk(O,x) = 8 k = 1susm, M
Here L k =1,...,n, are second order elliptic, maybe degenerate, linear

K’

operators. Some boundary conditions should be supplemented to the problem if
r

D#R.



The simplest example of an RDE is the Kolmogorov-Petrovskii-Piskunov
(KPP) equation:

8u _ 62u 1

> = .
TE 5 , t 0, u(0,x) g(x)

It was proved in [17] that for certain initial functions the solution of the
KPP equation for large t 1is close to a running wave solution v(x-at). The
shape v(z) of the wave and its speed a are defined by the equation.

We consider various generalizations of this result ([6]-[8], [10], [11])
in the first part of these lectures. These generalizations lead to some new
effects in the behavior of the solutions, such as jumps of the wave fronts and
breaking of the Huygens principle in slowly changing non-homogeneous media, or
an increase of the speed of the fronts in the weakly coupled RDE’s. In simple
situations the motion of the wave front can be described by Huygens principle,
in the proper Riemannian or Finsler metric. KPP equation and some generaliza-
tions of this equation are considered in [(1]-[3], [14], [18].

The RDE system defines a semi-flow Ut = (ul(t,°),...,un(t,°)) in the
space of continuous functions of x. This semi-flow in general has a rich
w-limit set, which consists of the stationary points of the semi-flow, the
periodic-in-time solutions, and more complicated subsets of the phase space.
Suppose now that the semi-flow is subjected to small random perturbations.
Then the solution of the perturbed RDE system uc(t,x), (¢ characterizes the
"strength" of the perturbations) will be a random field. We can look on
us(t,x) as on a random process in the functional space, which is a perturba-
tion of the initial semi-flow.

The second class of problems which we consider here concerns the
deviations of uc(t,-) from Ut' In the case of PDE’s there are more ways to
introduce perturbations than in the case of finite-dimensional dynamical sys-
tems. For example, an interesting problem is the consideration of perturba-
tions of the boundary conditions. We study several classes of perturbations
of the semi-flow and establish results of law-of-large-numbers type, of
central-limit-theorem type, and limit theorems for large deviations (see [5],
(91, [13], (18], [18], [21], [24])

It is my pleasure to thank Richard Sowers for his assistance in the

preparation of the manuscript and many useful remarks.



§1. Markov Processes and Differential Equations.

Let
r 2 r
L = X ai‘j(x)—a—+ Zbi(x)-a—
2 axiaxJ 6xi
1, j=1 i=1

be an elliptic, maybe degenerate, operator. This means that E ai‘)(x)J\iA‘J
2 0 for any real Al""’ar and any X € Rr. s

We assume that the coefficients are bounded and at least Lipschitz
continuous. If the matrix (aiJ(x)) degenerates we assume that the entries
aij(x) have bounded second order derivatives. This last assumption provides
the existence of a matrix o(x) = (oi(x))q with Lipschitz-continuous elements
such that U(X)U‘(X) = (aiJ(x)) (see [8] Ch. 1). In the non-degenerate case,
of course, the existence of such a matrix o(x) 1is provided by the Lipschitz
continuity of the entries aiJ(x).

Let Wt, t 20, 1is the r-dimensional Wiener process. Consider the
stochastic differential equation (SDE)

dXt = b(Xt)dt-+a(Xt)th, XO = X.

Here b(x) = (bl(x),...,br(x)]; o(x) is introduced above. Since the coeffi-
cients of the equation are bounded and Lipschitz continuous, there exists a
unique solution X: (the index x points out the starting point x € Rr).
The set of random processes (X:, X € Rr} form the Markov family X? cor-
responding to the operator L in the phase space R". The family of probabi-
lity measures Px in the space C w(Rr) of continuous functions on [0, ®)

0
with values in R’ induced by the processes XX in C m(Rr) is called the

t 0,
Markov process corresponding to the operator L.
For any smooth enough function U(t,x), one can write the Ito formula
t t
(1.1) U, X -u0,x) = | [s, X +Luts, X0 ]as + | (V. U(s, X5, o(X5)aW_).
& at s s X s s s
0 0
Let B be the Banach space of functions f(x), x € Rr, which are
bounded and measurable with respect to the Borel o-field. We denote |f| =

sup [f(x)|. Consider the semi-group Tt corresponding to the family Xt
X€R
(to the Markov process (Px})



- x -
(th)(x) = Ef(Xt) = Exf(Xt).

The subscript x 1in the sign of expectation points out that we consider
integral with respect to the measure Px' We will use both notations:
notations connected with the Markov family (Ef(Xt)) as well as the notation
connected with the process {Px} (Exf(xt)). The family Tt is a positive
contracting semi-group; th(x) 20 if f(x) 20, and Hth(x)M < If(x)].

If f(x) 1is continuous, then th(x) is also continuous (Feller property).
From here, taking into account that the trajectories X: are continuous in t
with probability 1 for any x, we conclude (see [8]) that the process (Px)

(family X?) has the strong Markov property.
th_f

3 of the

Using (1.1) one can check that the generator & : Af = lim

t,0

v

semi-group is defined at least for the functions f = f(x) having bounded

uniformly continuous second derivatives, and 4f = Lf for such f.

Consider the Cauchy problem

r

Bult,x) _ pu(t,x) +clt,x)u(t,x), t >0, xeR

at

(1.2)
u(0,x) = g(x).

Here «c(t,x) 1is a continuous bounded function. The famous Feynman-Kac
formula gives the representation of the solution wu(t,x) of the problem (1.2)
in the form of a functional integral

t
(1.3) u(t,x) = Exg(Xt)exp J c(t—s,XS)ds .

0

To prove (1.3) assume for a moment that g(x) has bounded continuous
second order derivatives, and that the operator L 1is uniformly elliptic.
Then the problem (1.2} has a unique solution u(t,x) which is a bounded func-
tionn having a first derivative in t and a second derivative in x which is

r X t
continuous and bounded for 0 <t < T, x € R. Let Yt = I c(t—s,X:)ds and
0
consider the function u(t—s,Xz)exp{Yz). By Ito’'s formula we have

fgc(t~s,xx)ds t
(1.4) u(0,x%)e S _ult,x) = J (qu(t~s,X:). or(x’s‘)de)

t
0



t
+J [Lu(t-s,Xs) - g—\;(t-s,xs)
0

t
X X X
+c(t—s,XS)u(t—s,Xs)]exp [ c(t s,Xs)ds S.
0

The first integral in the right side of the last equality has zero expecta-
tion. The last integral is equal to zero since u(t,x) 1is the solution of
problem (1.2). Taking into account that wu(0,x) = g(x), we derive (1.3) from
(1.4).

If g(x) 1is a continuous bounded function it can be uniformly approxi-
mated by a sequence gn(x) of smooth functions. For solutions un(t.x) of
problem (1.2) with the initial functions gn(x) we have the Feynman-Kac for-

mula. From the maximum principle we conclude that un(t,x)—au(t,x) when

t
g, 8 On the other hand, Exgn(xt)exp{f c(t—s,xs)ds}—a

0
t
Exg(Xt)exp{Io

bounded g(x).

c(t—s.XS)ds} when n—w. This leads to (1.3) for continuous

In general, if the operator L degenerates for some x € Rr, problem
(1.2) may not have a classical solution. In this case equality (1.3) defines
the generalized solution. It is easy to check that this generalized solution
coincides with the generalized solution in the small viscosity sense (see [7]
Ch. 3).

Let T be a Markov time with respect to the family of o-fields ¥, =

t

V(XS, s <t), T, = tat. Then taking into account strong Markov property we

can conclude from (1.3) that

Tt

(1.5) u(t,x) = Exu(t—rt,Xt)exp J c(t—s,Xs)ds ]
0

Let us consider ncw an irnitial-boundary problem

QE%%LEl = Lu+c(t,x)u, t >0, xeDcR
(1.86)

v'0,x) = g(x), ult,x)]| = y(x),

xedD

where D is a bounded domain in R" with smooth boundary 8D, and y(x) is



a continuous function on &8D. Assume for brevity that the operator L |is
non-degenerate. Then the problem (1.6) has a unique solution. Denote
T = inf{t : X, ¢ D}, the first exit time from D. The following representa-

t
tion holds for the solution of the problem (1.6)

(1.7)
T

t
u(t,x) = Exg(xt)x(r>t}exp{J c(t—s,XS)ds}*-Exw(XT)x(Tst)exp{J c(t—s,XS)ds}.
0 0

This representation can be proved in the same way as (1.3) (see [7], Ch. 2).
There are representations in the form of functional integrals for the

solutions of stationary problems for the operator L. For example, the solu-

tion of the Dirichlet problem Lu(x) =0, x e Dc R, u(x)]aD = y(x) can be

written in the form
u(x) = Exw(XT),

where T = inf{t : Xt ¢ D}. The domain D 1is assumed, for brevity, bounded
with smooth boundary; the operator L 1is elliptic.

One can consider boundary and initial-boundary problems with the Neyman
condition or with some more general boundary conditions. In this case the
representations in the form of functional integrals are also available, but we
should consider random processes in the domain with corresponding boundary
conditions (see [7], Ch. 2).

Consider now the Cauchy problem for a quasi-linear parabolic equation of

the form
du 1 S i 2u S i a

kel zg: (%, u) == :E:b (x,u)—ET+-c(x,u)

(1.8) ax'ax?) 3x
i, Jj=1 i=1
u(0,x) = g(x).
oo
We assume that r a ‘J(X)Ai?\‘j 2 0, that the coefficients of the equation
i, Jj=1

are bounded and Lipschitz continuous, and that the initial function g(x) is
continuous and bounded.
Suppose that there exists a solution wu(t,x) of the problem (1.8). Then

we can consider the Markov family



S S

(1.9)  xU%ox = | exB X utt-s, xU X Naw + | oxb ¥ uit-s. x4 ¥))ds, .
s S1 1’ 'sy Sy Sy 1'"'sy 1

0 0
d iJ =
Here o(x,u)o (x,u) = (a ¥(x,u)), u(s,x) = g(x) for s £ 0. Using the
Feynman-Kac formula we can write down for wu(t,x) the following equality

t
(1.10) u(t,x) = Eg(Xt'x)exp J c(X;’x,u(t-s,X;’x))ds
0

So if wu(t,x) 1is the unique solution of (1.8), then u(t,x) together with

X;'x satisfies the system (1.8) - (1.10). Therefore we can introduce the
generalized solution of (1.8) as a function wu(t,x) which, together with
Xt’x, satisfies the system (1.8) - (1.10). Of course, if the matrix

(zij(x,u)) is non-degenerate, the existence and the uniqueness of the classi-
cal (and thus generalized) solution follows from the a priori bounds for the
solution of linear parabolic equations. In the degenerate case the solution
u(t,x) (in some weak sense) of problem (1.8) will be continuous for t > 0O
small enough. The solution may have in general discontinuities for t
greater than some tO > 0. We can give some sufficient conditions for exist-
ence and uniqueness and continuity of the generalized solution for all t > O.
One can also check that under some additional assumptions this solution will
be classical.

I shall mention two classes of conditions which provide the existence of
the continuous solution for all t > 0 (see [7] Ch. 5).

Let the diffusion matrix in (1.8) be independent of u, and assume for
brevity that c(x,u) = 0. Consider the Markov family ?t which is defined by

the following equation
< =X oX
1.11 = =
( ) dXy = o(XDaw,, X5 = x,

- .
where o(x)o (x) = (aiJ(x)). Assume that there exists a bounded Lipschitz

continuous vector field ¢(x,u) = (wl(x.u)....,wr(x,u)) such that
(1.12) o(x)e(x,u) = b(x,u),
where b(x,u) = (bl(x,u),....br(x,u)). Then according to the Cameron-Martin-

Girsanov formula, measures Px and ﬁx in COT' corresponding to the

families Xt and i:, are absolutely continuous each with respect to the

other and



10

T T
Px(%) = exp { (p(X, ult-s, %)), aW ) -%J lp(X%, ult-s, X)) 1 %as |
dP

x 0 0

Taking into account the last formula we can write that

T T

_ Xy _ gX X 1
(1.13) wu(t,x) = Eg(Xt) = Eg(Xt)exp{J (w(XS,u),dws) ZJ

S 2
Iw(xs,u)l ds}.
0 0

The system (1.11) - (1.13) is equivalent to (1.8) - (1.10).

After the change of variables (Xt.u)—a(it.u), the system of equations

became triangular. The first equation (1.11) can be solved independently of
X
t
equation (1.13) will be the equation for generalized solution wu(t,x) of the

the second one. We can consider the family X as a given one, and then
problem.

The equation (1.13), under condition that ¢(x,u) is Lipschitz contin-
uous in u, can be solved by the successive approximations (see [7], Ch. 5):

The approximations

t
s _ X X e $
uo(t,x) = g(x), un+l(t,x) = Eg(Xt)exp J (w(xs.un(t s,XS),de)
0
t
1 X 5 2
—ZJ lw(XS,un(t—s,XS))l ds
0

converge uniformly to the unique solution of the equation (1.13). Under some
additional assumptions one can prove smoothness of the generalized solution.
Another type of assumption which also provides the existence and unique-
ness and continuity of the generalized solution for all t > 0 is as follows.
Let, for brevity, the last term in equation (1.8) be linear: c(x,u) = cu,
c = const. It is not difficult to prove that there exists tO > 0 such that
the generalized solution exists for t e [O,tO] provided the coefficients and
the initial function are smooth enough. The greater the constant -c, the
bigger t is. It turns out that a constant «c < 0 exists such that

0 critical
if e<c .. the continuous generalized solution exists for all t 2 0.
critical
The exact statement and the proof one can find in §5.2 of [7].
A similar approach is also useful in the initial-boundary problems for

quasi-linear equations.



