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Preface

This volume provides a comprehensive account of finite element
Galerkin methods for the approximate solution of two-point boundary
value problems and partial differential equations. The emphasis
throughout is on the theoretical aspects of such methods; few compu-
tational details are provided.

The purpose of the first chapter is to introduce, by means of a
simple example, the ideas underlying finite element Galerkin methods,
and to summarize the basic concepts and theorems of analysis which are
required in subsequent chapters. Readers unfamiliar with Sobolev
spaces and the general properties of the finite dimensional spaces
used in finite element Galerkin methods are advised to omit Sections
1.2-1.4 on a first reading and use these sections for reference in
later chapters. Finite element Galerkin methods for two-point bound-
ary value problems are treated in Chapter 2, which also includes a
discussion of the spaces of piecewise polynomial functions most common-
ly used in problems involving one space variable. Multivariate piece-
wise polynomial functions are introduced in Chapter 3, which is
concerned with elliptic boundary value problems. One of the notable
features of the book is its extensive treatment of time-dependent
problems. Chapters 4 and 5 are devoted to parabolic and hyperbolic
problems respectively, and Chapter 6 to alternating direction Galerkin
methods for these problems. An extensive list of references is provided

at the end of each chapter.



This book is an extended and updated version of a set of notes
prepared for a series of lectures given at the South African Council
for Scientific and Industrial Research (CSIR) in 1971, and published
as a CSIR Special Report in 1973. Professor C. Jacobsz, former Director
of the National Research Institute for Mathematical Sciences (NRIMS) of
the CSIR, provided me with the opportunity to visit CSIR originally.

It is largely due to his interest and encouragement that this book has
been written. I should like to express my thanks to him, and to his
successor, Professor David H. Jacobson, who kindly arranged a return
visit to CSIR during which the book was completed.

I owe a great deal to Julio Cesar Diaz and Annie Saylor of the
University of Kentucky who read the entire handwritten manuscript and
made many valuable comments and suggestions. Also I have benefited
greatly from discussions with Mary F. Wheeler of Rice University, and
Daniel B. Kotlow of the University of Kentucky. I am grateful to Wanda
Jones who typed the original manuscript in her usual flawless manner,
and to Petra Ras and Marie de Villiers of CSIR, and Pat Nichols of the
University of Kentucky for their expert assistance and inexhaustible
patience in typing the revisions. The typing of the manuscript was
par lally supported by a grant from the University of Kentucky Research
Foundation.

Finally, I am especially grateful to my wife and children for their
support, encouragement, and patient understanding throughout this

endeavor. To them, and to my family in Scotland, this book is dedicated.

Graeme Fairweather
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Chapter 1

PRELIMINARIES

1.1 Introduction In recent years the Galerkin method has proved in

practice to be a powerful technique for the approximate solution of
problems involving differential and integral equations. The basic

idea of the method can be explained quite briefly. Suppose one seeks

a solution to a problem involving the operator equation L(u) = f.
First one chooses a suitable finite dimensional space M, the trial
space, and a basis {wl,...,wN} of M. The Galerkin method then consistsr

in finding an approximation to u of the form

N
U= I oa:w;:,
j=1 1
where the unknown coefficients o,, j=J,...,N, are determined so that
J

(L(w) - £,v) =0,

for all V € M, where (-,*) denotes an inner product defined on M,
(usually the L2 inner product). The function U is called the Galerkin
approximation to u in the space M, whose elements are called trial functions.
In time dependent problems, the coefficients aj, j=1,...,N, are unknown
functidhs of time while the basis functions are functions of the space
variables only.

This idea is not new - it was first proposed by Galerkin [ 7] in
1915. What is new and has made the method so successful is the choice
of the space M and the construction of appropriate basis functions.

If M is a space of piecewise polynomial functions a basis for M can

1



be chosen such that each basis function is a piecewise polynomial on
a very small region of the spatial domain outside of which it is zero.
Such a basis is called a local, or patch, basis. The Galerkin method
with a space of piecewise polynomial functions and a local basis
yields an approximation of high order accuracy to a smooth solution u.
This approximation is determined by solving a sparse system of equa-
tions which can be done efficiently by specially designed techniques.
As a simple example of the method consider the two-point

boundary value problem

(1.1a) L(u) x e (0,1) ,

]
|
=
]

(1.1b) u (0) u(l)

]
o

Let M be the space spanned by the functions

(X~xi_l)/(xi—xi_l), x e [x5_7.x51
(1.2) wi(X) = (xi+l-x)/(xi+l—xi), X € [xi,xi+l] P

0, otherwise,

for i =1,2,...,N, where xo,xl,...,x are N+1 points in [0,1] such

N+1
that
0=x, < x, <*-°< X = 1.
0 1 N+1
Notice that w; (0) = wi(l) =0,1i=1,...,N, and wi(xj) = 6ij' where éij

denotes the Kronecker delta. Let (*,*) denote the inner product defined

by

(f,g) = fé f(x)g(x)dx .



If U denotes the Galerkin approximation to u in M then, on using the

formal integration by parts formula

1 1
r " sz of I
/o U wi dx T U wi dx ,

we find that U satisfies
(1:4-3) fl U'w' dx = fl w, dx , 1= 150N

0 i o 1
On substituting
(1.4) Ux) = Z a.w,(x)

=1 J 73]

into (1.3) we obtain a system of linear algebraic equations,
the Galerkin equations ,

1 3
(1.5) twhidx)a. = 6 widx, i=1,...,N

1] J

oz

1
(/" w
0

j=1

for the coefficients aj, j=1,...,N. If we denote the coefficient
matrix by A = (aij) it is a simple matter to show that A is
tridiagonal, and

a = (x,

ii PO IR DL C T IR C I e ) B

B gey = MGG s
a5 441 T M (xgg7xp)
Also
1 1
6 w,dx = 3(xi+l—xi_l) .

Moreover, A is diagonally dominant (see [13]), and hence the solution
of the Galerkin equations can be obtained using the well-known

algorithm for solving tridiagonal systems ([13], page 195).



Note that since wi(xj) = 6ij’ we have U(xi) = o, and hence in the
case in which the points x, are equally spaced, that is, X, = ih,
i=0,...,N+1, we obtain a well-known finite difference approximation
to (1.1),[10]. As we shall see in Chapter 2, the Galerkin
method is of the same accuracy as this finite difference method even
when the points xj are not equally spaced.

This example exhibits the main ideas of the Galerkin method for
solving equilibrium problems with homogeneous boundary conditions.
The elements of the space M satisfy these boundary conditions and
consequently so does the Galerkin approximation U & M. A local basis
for M is chosen which yields a sparse system of linear algebraic
equations for the coefficients in the expansion of U in terms of the
basis functions. In time dependent problems the Galerkin method is
applied in the space variables only,and gives rise to an initial value
problem for a system of ordinary differential equations , whose solution
defines the so-called continuous-time Galerkin approximation to u in M.
In practical computations this initial value problem is solved approximately
using a discrete variable method known as a discrete—time Galerkin method,
and the resulting approximation to u is called the discrete-time Galerkin
approximation to u in M.

The Galerkin method is closely related to the Rayleigh-Ritz
method, and in many cases they are equivalent in the sense that they
lead to the same approximate solution. The Rayleigh-Ritz method is
based on the fact that many boundary value problems can be formulated
in terms of variational problems. That is, some functional is
to be minimised over an appropriate space of admissible functions.
For example the solution of (1.1) can be viewed as the function in H,

the space of all functions which are twice continuously differentiable



on the interval [0,1] and satisfy the boundary conditions (1.1b),

which minimises the functional
1 2
I(u) = fo [(u)° - 2uldx .

The Rayleigh-Ritz method involves seeking a minimum to I(u) in M rather
than in H. For this example it is easy to show that the element
U € M such that

I(U) = min I(x)
XEM

satisfies (1.4), and hence the Rayleigh-Ritz and Galerkin methods yield
the same solution in this case. The advantage of the Galerkin formulation
is that there is no need to find the variational problem equivalent to the
original problem. In this book we will not consider the Rayleigh-Ritz approach.
In the engineering literature since the mid-1950's, and recently
in the numerical analysis literature, the use of piecewise polynomial
spaces in the Rayleigh-Ritz or Galerkin procedure,particularly in
multi-dimensional problems in irregular regions,has been called the
finite element method. Herein, by the finite element Galerkin method,
or simply the Galerkin method, we shall mean the combination of the
classical technique of Galerkin [7] and spaces of piecewise polyno-

mial functions.

1.2 Notation and some inequalities All functions considered in the

following are real-valued. Let © be a bounded domain in Rn,
n-dimensional Euclidean space, and denote by 32 the boundary of Q.

Let x = {xl,...,xn} denote a variable point in  and let

IERREE ax_. If y = (Yl'YZ""’Yn) is an n-tuple with nonnegative

integer components we write



Bh(l

Bxil... 3x'n
n

n
where |yl = X vy. , and DO denotes the identity operator.
i

P
For 1 < p < «, L (R) denotes the space of functions u on Q such

P § i i i
that fQ]u(x)l dx exists and is finite. The norm on LP(Q) is given by

p_ 1/p
||ul| p (fQIu(x)| dx) i 1<pc<eo,
L (R)
It is well-known that LZ(Q) is a Hilbert space with respect to the
inner product
(u,v) = fnu(x)v(x)dx
When it is clear from the context, ||‘|| 5 will be written ]|'||.

L (%)
By L () we denote the space of functions u on { such that

|]u|| - = ess sup |u(x)| < ®
L (R) xeQ

For any nonnegative integer r, Cr(Q) (respectively, Cr(53) is the
space of functions with continuous (respectively, uniformly continuous)
derivatives up to and including order r in . Also, C:(Q) is the space
of all infinitely differentiable functions which vanish identically
outside some compact set contained in Q. The Sobolev space of order
r on Q,Hr(Q),(respectively HE(Q)) is defined as the closure of Cr(ﬁb

(respectively C:(Q)) with respect to the norm

Hall, o= C 2 1% HY?
3 .Yir

Equivalently, Hr(Q) is the space of all functions whose distributional
2
derivatives of order less than or equal to r are in L (). It can be

o) —
shown that if 9Q is sufficiently smooth and u € HS(Q) n c* () then



]
Zu._g on 39
3n?
for 0 < j < r-1, where 3/0n denotes differentiation in the direction

of the outward normal to the boundary. The space Hr(Rp) is the

(o]
completion of Co(Rn) in the above norm.
Sometimes we shall use the notation LZ(Q) = HO(Q). Also we shall
make use of the semi-norm

2 1/2
[l =z [[p"u]] )
r,0,Q Y|=r Lz(Q)
When no risk of confusion exists we shall substitute Hr, Hg, ||u||r,

and ||u|]r’o for HY(Q), HE(Q), [|u||r,Q, and | |ul| s respectively.

r,0,9
For r > 0 and not an integer, Hr(Q) is defined by real
interpolation between successive integers (see [11]). For r <0

any real number, Hr(Q) will denote the completion of Cm(ﬁb with

respect to the norm

llul|r = sup{(u,v)/||v||_r’Q; veHT®Q), | 4 0}

Mg

The function space HY (32) for all real r is the Sobolev space

of order r on 392, For a precise definition we refer the reader to

[11]. We shall denote by , or I' ’ the norm on Hr(BQ).

I.Ir,BQ
Note that Ho(aﬂ) = L2(BQ), and in this case we denote the inner
product by

ta,v) = [ uvdo ,
o0

where do denotes the surface measure on 9%, and the norm by I'].

In the analysis of time dependent problems the following notation

is convenient. If X is a normed space with norm | and ¢: [0,T] ~

Iy
X, then



= (T P 1/p -
II¢IILP(X) ({) ||¢(t)||x dt) , 1<p<o,

Holl o = max [loe) ], -
L (X)  O<t<T

The space Lp(X) is the set of all ¢ such that the appropriate norm
is finite.

Throughout this book C will denote a generic constant with possibly
different values in different contexts.

In the following theorems we present, without proof, inequalities

which will be of frequent use in error analyses in subsequent chapters.

Theorem 1.1 Suppose that  is a bounded domain in R" and that r is
a positive integer. If O < k < r, then there exists a constant Ck .
’

such that

(1-6) l]ullk’oick’r‘lullr’o >

for all u € HE(Q).
This result, the Poincaré Inequality for functions in HS(Q), is proved
in [1]. Using Theorem 1.1 it is easy to show that |]'||r 0.0 defines a norm
5 ’

r .
on HO(Q) equivalent to the norm [l llr,Q

A one-dimensional case of this inequality is the Rayleigh-Ritz

Inequality given in the following theorem, (see [9]).

1
Theorem 1.2 If u € HO(I),where I = (a,b) and -» < a < b < =, then

(1.7) n||u|| < (b-a) | |pul].

A domain {2 has the restricted cone property if 9% has a locally
finite open covering {Oi} and corresponding cones {Ci} with vertices
at the origin and the property that x+Ci CQ for x € Q F\Oi. A proof

of the following theorem can be found in [1].



Theorem 1.3 (Sobolev's Inequality) Let 2 be a bounded domain in R"

having the restricted cone property, let u € Hr(Q), where r is a
positive integer such that r > n/2, and let £ = r - [n/2] - 1. Then
u can be modified on a set of measure zero so that u € Cg(fb. More-

over, for any ¢ > 1, |Y| <&, x e Q,
1
(1.8) Daco] < e (a6l

where C is a constant that depends only on  and r.
In one space variable the following special case of this result

is elementary to establish, (cf. [14], page 26).

Theorem 1.4 If u ¢ Hé(I),where I = (a,b) and -» < a < b < © _ then

(1.9) < %_(b—a)l/zllDuH )

ol . =
L™ (1)

1.3 Approximation-theoretic results In subsequent chapters it will

be shown that the accuracy of the Galerkin procedure depends on the
approximation properties of the chosen spaces M. Usually these spaces
are selected in some systematic fashion depending on some parameter,
such as the spacing of nodes associated with the functions of a
particular basis for the space. Bramble and Schatz [3] formulated a
useful definition that isolates exactly the properties of these spaces
needed to derive optimal error estimates. Let {Mh}0<h§l be a one-
parameter family of finite dimensional vector spaces. For given
integers k and r with 0 < k < r we shall say that {Mh}0<h§1 is of
class Sk,r(Q) if Mh C Hk(Q) for each h and if for any u € Hr(Q)

there exists a u € Mh and a constant C independent of h and u such

that



