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Preface

The 7th International Colloquium on Grammatical Inference (ICGI 2004) was
held in the National Centre for Scientific Research “Demokritos”, Athens, Greece
on October 11-13, 2004. ICGI 2004 was the seventh in a series of successful
biennial international conferences in the area of grammatical inference. Previous
meetings were held in Essex, UK; Alicante, Spain; Montpellier, France; Ames,
Iowa, USA; Lisbon, Portugal; and Amsterdam, The Netherlands. This series
of conferences seeks to provide a forum for the presentation and discussion of
original research papers on all aspects of grammatical inference.

Grammatical inference, the study of learning grammars from data, is an es-
tablished research field in artificial intelligence, dating back to the 1960s, and has
been extensively addressed by researchers in automata theory, language acquisi-
tion, computational linguistics, machine learning, pattern recognition, computa-
tional learning theory and neural networks. ICGI 2004 emphasized the multidis-
ciplinary nature of the research field and the diverse domains in which grammat-
ical inference is being applied, such as natural language acquisition, computa-
tional biology, structural pattern recognition, information retrieval, Web mining,
text processing, data compression and adaptive intelligent agents.

We received 45 high-quality papers from 19 countries. The papers were re-
viewed by at least two — in most cases three — reviewers. In addition to the 20
full papers, 8 short papers that received positive comments from the reviewers
were accepted, and they appear in a separate section of this volume. The top-
ics of the accepted papers vary from theoretical results of learning algorithms
to innovative applications of grammatical inference, and from learning several
interesting classes of formal grammars to estimations of probabilistic grammars.

In conjunction with ICGI 2004, a context-free grammar learning competition,
named Omphalos, took place. In an invited paper in this volume, the organiz-
ers of the competition report on the peculiarities of such an endeavor and some
interesting theoretical findings. Last but not least, we are honored by the contri-
butions of our invited speakers Prof. Dana Angluin, from Yale University, USA,
and Prof. Enrique Vidal, from Universidade Politecnica de Valencia, Spain.

The editors would like to acknowledge the contribution of the Program Com-
mittee and the Additional Reviewers in reviewing the submitted papers, and
thank the Organizing Committee for their invaluable help in organizing the
conference. Particularly, we would like to thank Colin de la Higuera, Menno
van Zaannen, Georgios Petasis, Georgios Sigletos and Evangelia Alexopoulou
for their additional voluntary service to the grammatical inference community,
through this conference. We would also like to acknowledge the use of the Cy-
berchair software, from Borbala Online Conference Services, in the submission
and reviewing process. Finally, we are grateful for the generous support and
sponsorship of the conference by NCSR “Demokritos”, the PASCAL and KD-
net European Networks of Excellence, and Biovista: Corporate Intelligence in
Biotechnology.

October 2004 Georgios Paliouras and Yasubumi Sakakibara
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Learning and Mathematics

Dana Angluin

Yale University
P.O. Box 208285, New Haven, CT 06520-8285, USA
angluin@cs.yale.edu
http://www.cs.yale.edu/people/faculty/angluin.html

Our formal models of learning seem to overestimate how hard it is to learn some
kinds of things, including grammars. One possible reason for this is that our
models generally do not represent learning a concept as an incremental addition
to a rich collection of related concepts. This raises the question of how to make
a good model of a “rich collection of related concepts.” Rather than start by
trying to make a general model, or adapting existing formalisms (e.g., logical
theories) for the purpose, I have undertaken an extended look at a particular
domain, namely mathematics. Mathematics certainly qualifies as a rich collection
of related concepts, and has the advantage of thousands of years of effort devoted
to improving its representations and clarifying its interconnections. This talk will
present some of the issues I have encountered, and will probably consist of more
questions than answers.

An anecdote will begin to raise some questions. At a workshop some years
ago, a colleague asked me if I was familiar with the following problem. Given a
nonempty finite set U of cardinality n, and two positive integers s < t < n, find
the minimum cardinality of a collection C of subsets of U of size t such that
every subset of U of size s is a subset of some element of C. Since I was not
familiar with the problem, she continued to ask others at the workshop, until
finally someone gave her the name of the problem and a pointer to work on it.

The meaning of the problem is clear (to someone with some mathematical
training) from a very short description. What kind of representation would it
take for us to be able to give something like this description to a search engine
and be referred to papers that dealt with it? We already are expected to make our
papers available in machine readable form on the web, or risk their irrelevance.
Perhaps some enhancement of that representation could make such searches
possible?

As another example, students in an elementary discrete mathematics course
are often introduced to the concepts of permutations and combinations by means
of concrete examples. Liu [1] asks the reader to imagine placing three balls,
colored red, blue, and white, into ten boxes, numbered 1 through 10, in such
a way that each box holds at most one ball. The problem is to determine the
number of ways that this may be done. Lovéasz, Pelikdn and Vesztergombi [2]
describe a party with seven participants, each of whom shakes hands once with
each of the others, and ask how many handshakes there have been in total. An
introductory textbook will typically contain many examples and exercises of this
kind.

G. Paliouras and Y. Sakakibara (Eds.): ICGI 2004, LNAI 3264, pp. 1-2, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



2 Dana Angluin

The situations used involve familiar elements, are easily imagined, and are
intended to engage the student’s intuitions in helpful ways. However, some stu-
dents find it quite difficult to get the hang of the implicit rules for these problems.
What will not help such students is the customary explicit and detailed formal-
ization of the domain as a logical theory. What might help would be a somewhat
more concrete model in terms of actions and state spaces. This is reminiscent
of Piaget’s emphasis upon an individual’s actions as a basis for more abstract
understanding.

These issues provide a window on other questions about mathematical rea-
soning and representation. It is likely that we will make more and more use of
computers to help us create and use mathematics. Questions of how best to do
that are far from settled, and will require a deep understanding of the multi-
tude of ways that people actually do mathematics. Ironically, those for whom
mathematics is difficult may provide some of the clearest evidence of what is
involved.

References
1. C. L. Liu. Elements of Discrete Mathematics. McGraw-Hill, 1977.

2. L. Lovész, J. Pelikan, and K. Vesztergombi. Discrete Mathematics: Elementary and
Beyond. Springer, 2003.



Learning Finite-State Models
for Machine Translation*

Enrique Vidal and Francisco Casacuberta

Departamento de Sistemas Informéticos y Computacién
Instituto Tecnolégico de Informatica, Universidad Politécnica de Valencia
46071 Valencia, Spain
{evidal,fcn}@iti.upv.es

Abstract. In formal language theory finite-state transducers are well-
know models for “input-output” rational mappings between two lan-
guages. Even if more powerful, recursive models can be used to account
for more complex mappings, it has been argued that the input-output
relations underlying most usual natural language pairs are essentially ra-
tional. Moreover, the relative simplicity of these mappings has recently
lead to the development of techniques for learning finite-state transduc-
ers from a training set of input-output sentence pairs of the languages
considered. Following these arguments, in the last few years a number
of machine translation systems have been developed based on stochas-
tic finite-state transducers. Here we review the statistical statement of
Machine Translation and how the corresponding modelling, learning and
search problems can be solved by using stochastic finite-state transduc-
ers. We also review the results achieved by the systems developed under
this paradigm. After presenting the traditional approach, where trans-
ducer learning is mainly solved under the grammatical inference frame-
work, we propose a new approach where learning is explicitly considered
as a statistical estimation problem and the whole stochastic finite-state
transducer learning problem is solved by expectation maximisation.

1 Introduction

Machine translation (MT) is one of the most appealing (and challenging) ap-
plications of human language processing technology. Because of its great social
and economical interest, in the last 20 years MT has been considered under al-
most every imaginable point of view: from strictly linguistics-based methods to
pure statistical approaches including, of course, formal language theory and the
corresponding learning paradigm, grammatical inference (GI). Different degrees
of success have been achieved so far using these approaches.

Basic MT consists in transforming text from a source language into a target
language, but several extensions to this framework have been considered. Among
the most interesting of these extensions are speech-to-speech MT (STSMT) and
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computer assisted (human) translation (CAT). In STSMT, which is generally
considered significantly harder than pure text MT, the system has to accept
a source-language utterance and produce corresponding human-understandable
target-language speech. In CAT, on the other hand, the input is source-language
text and both the system and the human translator have to collaborate with each
other in an attempt to produce high quality target text.

Here we consider MT, STSMT and CAT models that can be be automat-
ically learned through suitable combinations of GI and statistical methods. In
particular we are interested in stochastic finite-state transducers. Techniques for
learning these models have been studied by several authors, in many cases with
special motivation for their use in MT applications. [1-12].

2 General Statement of MT Problems

The (text-to-text) MT problem can be statistically stated as follows. Given a
sentence s from a source language, search for a target-language sentence t which
maximises the posterior probability!:

~

t = argmax Pr(t|s) . (1)
t

It is commonly accepted that a convenient way to deal with this equation is
to transform it by using the Bayes’ theorem:

t = argmax Pr(t) - Pr(s|t) , (2)
t

where Pr(t) is a target language model — which gives high probability to well

formed target sentences — and Pr(s| t) accounts for source-target word(-position)

relations and is based on stochastic dictionaries and alignment models [13,14].
Alternatively the conditional distribution in Eq. 1 can be transformed into a

joint distribution:

t = argmax Pr(s, t) , (3)

t
which can be adequately modelled by means of stochastic finite-state transducers

(SFST) [15]. This is the kind of models considered in the present work.

Let us now consider the STSMT problem. Here an acoustic representation
of a source-language utterance x is available and the problem is to search for a
target-language sentence t that maximises the posterior probability?:

t = argmax Pr(t|x) . (4)
t

Every possible decoding of a source utterance x in the source language can be
considered as the value of a hidden variable s [15] and, assuming Pr(x|s, t) does
not depend on t, Eq. 4 can be rewritten as:

! For s1mphc1ty, Pr(X = z) and Pr(X = z | Y = y) are denoted as Pr(z) and Pr(z | y).
2 From t, a target utterance can be produced by using a text-to-speech synthesiser.
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t= argmaxZPr(s, t) - Pr(x]s) . (5)
t s

As in plain MT, Pr(s, t) can be modelled by a SFST. The term Pr(x|s), on the
other hand, can be modelled through hidden Markov models (HMM) [16], which
are the standard acoustic models in automatic speech recognition. Thanks to the
homogeneous finite-state nature of both SFST and HMMs, and approximating
the sum with a maximisation, Eq. 5 can be easily and efficiently solved by the
well-known Viterbi algorithm [15].

Finally, let us consider a simple statement of CAT [17]. Given a source text s
and a fixed prefir of the target sentence t, —previously validated by the human
translator—, the problem is to search for a suffiz of the target sentence t, that
maximises the posterior probability:

ts = argmax Pr(t,|s, t,) . (6)
t

s

Taking into account that Pr(t,|s) does not depend on ts, we can write:

ts = argmax Pr(s, tpts) , (7)
ts
where t,t, is the concatenation of the given prefix t, and a suffix t; suggested
by the system. Eq. 7 is similar to Eq. 3, but here the maximisation is constrained
to a set of suffixes, rather than full sentences. As in Eq. 3, this joint distribution
can be adequately modelled by means of SFST's [18].

All the above problem statements share the common learning problem of
estimating Pr(s, t), which can be approached by training a SFST from a parallel
text corpus.

3 Stochastic Finite-State Transducers

Different types of SFST's have been applied with success in some areas of machine
translation and other areas of natural language processing [3,19,4,8, 11,9, 20].
Here only conventional and subsequential SFSTs are considered. A SFST 7p is
a tuple (X, A, Q, qo, pr, fr), where X' is a finite set of source words, A is a finite
set of target words, @) is a finite set of states, qo is the initial state and pr and
fr are two functions pr : Q x ¥ x A* x Q — [0, 1] (transition probabilities) and
fr: Q — [0,1] (final-state probability), that verify:

Vee Q,  frle) + pr(g,a,w,q") = 1.
(a,w,q")EXXA*XQ

Given 7p, the joint probability of a pair (s,t) € X* x A* —denoted as
Prr, (s, t)- is the sum of the probabilities of all sequences of states that deal
with (s, t); that is, the concatenation of the source (target) words of the transi-
tions between each pair of adjacent states in the sequence of states is the source
sentence s (target sentence t) [21]. The probability of a particular state sequence
is the product of the corresponding transition probabilities, times the final-state
probability of the last state in the sequence [21].



