!
] \

plied BASIC Progrczmmmg

r 2.9
I X
: AN
; NS
a D

Richard Mojen

Applied
BASIC

Programming

ROY AGELOFF
University of Rhode Island

RICHARD MOJENA
University of Rhode Island

WADSWORTH PUBLISHING COMPANY
Belmont, California
A division of Wadsworth, Inc.

ISBN 0-534-00808-9

Library of Congress Cataloging in Publication Data

Ageloff, Roy, 1943—
Applied BASIC programming.

Includes index.
1. Basic (Computer program language)

I. Mojena, Richard, 1943— joint author.
II. Title.
QA76.73.B3A36 001.6’424 79-21142

ISBN 0-534-00808-9

Editorial production services by Cobb/Dunlop Publisher Services, Inc.

About the Cover: The cover of this book began as a black and white photograph of plastic daisy
printwheels. The color was computer-generated through a high-resolution video camera, and the
resulting image was converted to a 35mm transparency. Photograph courtesy of AGT Computer
Products, Inc., 914 Westwood Blvd., Los Angeles, California 90024.

© 1980 by Wadsworth, Inc. All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transcribed, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher, Wadsworth Publishing
Company, Belmont, California 94002, a division of Wadsworth, Inc.

Printed in the United States of America

9 10——85

To the best part of us
SHANA and YARA
with love

viii

Preface

TABLE 0.1

Page References for Applications Programs

Information Processing

tuition revenue 19, 28, 49, 55, 64, 73, 75, 78,
90, 101

depreciation 70, 101, 289, 306

psychological self-analysis 86

sales commissions 107, 117, 119, 127, 149, 158,
304

finding minimum value 123

property tax assessment 137, 218, 283

personnel benefits budget 139, 284

affirmative action search 140, 321

computerized matching—a file search 141, 247

credit billing 142, 284, 306, 322

student fee bill 144, 285, 306

traffic court fines 162, 164, B-23

interactive price quotations 165, 218, 283

mailing list 175, 247

telephone company billing 176, 284

aging customer accounts 177, 306

checking account report 181, 285, 306

analysis of bank deposits 188

table look-up 205, B-23

direct access to array element—SAT scores
209

sorting 212

crime data summary 218, 247, 285

revenue sharing 220, 306

alphanumeric distribution 221

exam grading 222, 286

financial report 238, 337

income tax 241, B-23

interactive airline reservation system 247

personnel salary budget 250, 286

Fortune 500 sort 251

questionnaire analysis 253, 286

cross tabulations 254

electric bill 287, 306, 322, B-24

class grades 315

computerized inventory control system 317

payroll 322

student billing B-7

automated repair and maintenance system C-4

Mathematical Modeling

costing 51, 68, 99, 135
microeconomics 52, 69, 99, 135
temperature conversion 53, 68, 98, 134
automobile financing 66

blood-bank inventory 69, 100, 136, 322
forecasting population growth 70, 100
bank savings account 91

revised tuition revenue 101, 172
retirement contribution 102, 172

bank drive-in queuing system 102, 173
factorials 138

quadratic roots 139

police car replacement 145

inflation curse 152

sales forecasts 178

installment loans 180, 285, 306

crew selection—a combination problem 183
bracket search algorithm 185, B-26

mean and standard deviation 203

support facility for oil drilling platform 219

polynomial root search 223

Poisson-distributed electronic failures 249

state lottery numbers 260

mathematical functions 264

polynomial plot 270

automobile rental decision 275, 283, B-23

craps simulation 286

statistical analyses 290

brand switching 338

solving systems of simultaneous linear
equations 343

stock portfolio valuation 347

faculty flow model 348

multiple linear regression analysis 349

replacement model C-1

inventory simulation C-11

Preface ix

They are described in a wide variety of contexts, including areas in business, econom-
ics, mathematics, statistics and emerging areas in the public sector (e.g., health care
delivery, emergency response systems, allocation of public resources, etc.).

Table 0.1 summarizes and references the applications described in the book
through examples and exercises. This table clearly illustrates our philosophy that prob-
lems should be presented in an evolutionary context. As new material is learned, many
examples and exercises improve upon previous versions of the same problem. This
approach not only is pedagogically sound but also is consistent with (but not identical to)
the evolutionary nature of program design in the ‘‘real world.”

Module C describes three extensive applications using the case method of study
popularized by graduate programs in business administration. These cases are designed
as capstone programming assignments using a proven technique that simulates reality
more effectively than end-of-chapter programming assignments.

Extensive examples and exercises. The learning of BASIC is greatly facilitated by nu-
merous and carefully designed examples and exercises. More than forty complete pro-
grams are illustrated within the book; about half of these are accompanied by program
flowcharts. Exercises are found both within chapters (Follow-up Exercises) and at the
end of chapters (Additional Exercises). The book has more than 300 exercises, many
with multiple parts. The chapters on minimal BASIC programming (Chapters 3-9)
average 34 exercises per chapter.

Follow-up exercises serve to reinforce, integrate, and extend preceding material.
This feature gives the book a ‘‘programmed learning’’ flavor without the regimentation
of such an approach. Additionally, we have found that they create an excellent basis for
planning many classroom lectures. Answers to selected follow-up exercises are pro-
vided at the end of the textbook. Answers to those follow-up exercises marked with
either a single (*) or double asterisk (**) are given in the Instructor's Manual.

The chapter-end exercises offer opportunities for review and the development of
new programming problems. All programming problems include test data. Examples
and exercises are generally framed in business, economic, and public sector scenarios to
interest and motivate the student. Exercises are ordered from least to most difficult. The
more difficult exercises are designed to challenge the good student, and are identified by
a double asterisk (¥*).

The histogram in Figure 0.1 summarizes the breakdown of space devoted to textual
matter, examples, and exercises within Chapters 3—12. This further highlights the strong

emphasis (75%) placed on examples and exercises within the primary programming
chapters.

Evolutionary approach. Coverage of programming proceeds from simple to difficult,
with students running complete programs by the end of Chapter 3. By design, the pace
of chapters builds slowly, to encourage confidence and to develop a sound foundation.
Necessarily, this approach discards the complete treatment of a topic in one place. For
example, transfer of control is broken up into Chapters 5 and 6, and I/O is specifically
discussed in Chapters 3, 4, 7, 8, 10, 11, and 12.

In addition, many sample programs and exercises are introduced early, and then
improved and expanded in later chapters as new features of the BASIC language are
presented.

Preface

FIGURE 0.1 Percent Breakdown of Chapters 3—12 by Category

40%

35%

25%

Text Examples Exercises

Common errors. The necessary process of debugging is time consuming, frustrating,
and difficult to master by beginning programmers. In our experience, students commit
certain programming errors more commonly than others. Accordingly, the book fea-
tures sections on debugging procedures and common errors in each programming chap-
ter, beginning with Chapter 4 and ending with Chapter 12.

Top down design and structured programming. The topics pseudocode, top down de-
sign, and structured programming in Module B can be assigned anytime after Chapter 5
by those instructors who wish their students to design and write programs using these
techniques. The assignment of Module B before Chapter 7 would serve to review style
issues and to consolidate design philosophy at a receptive point in time.

The early assignment of structured programming is especially desirable if the local
system supports structured BASIC statements. It is less desirable if minimal BASIC
statements are used to simulate control structures to the letter, since forcing an inher-
ently unstructured language (minimal BASIC) into pure structure requires ‘‘sleight of
hand.”

Our personal preference is to live with the unstructured faults of minimal BASIC
while keeping in mind the spirit of structured programming (for example, top down
execution and minimal use of GO TOs). This tradeoff will remain, of course, until the
ANSI committee and the industry see fit to standardize a set of structured BASIC
statements, a development we strongly endorse.

A book on programming and problem solving, not a programming manual. We believe
that a BASIC course should be much more than just a course that teaches the BASIC
language. It should teach the process of programming as a creative activity, from con-
ceptualization of the problem to implementation of the computer program.

Our emphasis on applications, examples, and exercises is in keeping with this
belief. Additionally, we give structure to the programming process by introducing a
four-step procedure in Chapter 2 that facilitates the design and documentation of
programs.

A programming course also should broaden a student’s perspective. Accordingly,
Chapter 1 overviews the field more thoroughly than the typical introductory chapter,
and Module B discusses style issues of keen topical interest.

Acknowledgments

We wish to express our deep appreciation to many who have contributed to this project:
to Mike Snell and Jon Thompson, our editors, for unflagging encouragement, support,

Preface xi

and expert advice; to Jenny Sill and Paula Delucchi, for liaison par excellence; to
Warren Rogers, Chairman, and Richard R. Weeks, Dean, both of the University of
Rhode Island, for consistent administrative help; to Diane Marcotte, for overseeing the
preparation of hundreds of copies of the manuscript for class teaching; to our students,
who suffered through ‘‘ditto’’ copies of the manuscript, yet managed to teach us some-
thing about teaching; to our reviewers, Larry Cook, Auburn University, Dennis Cole-
man, University of Hawaii, Henry Etlinger, Rochester Institute of Technology, Myron
Goldberg, Pace University, Richard Hatch, San Diego State University, Richard Lott,
Bentley College, R. Waldo Roth, Taylor University, and Clinton Smullen, University of
Tennessee, who provided invaluable corrections and suggestions for subsequent revi-
sions; to Fred Wild, for help with the manuscript and ‘‘grunt’’ work on the Instructor’s
Manual; to Fran Mojena, for her skill, patience, and steadiness in typing through
several drafts of the manuscript, while claiming that she actually learned something;
and to our immediate families, who remained cheerfully supportive in spite of our
frequent absence.

January, 1980 Roy AGELOFF
Kingston, Rhode Island RiCHARD MOJENA

Contents

Preface

PART | FOUNDATIONS

1 ORIENTATION

What is a Computer?

Impact of the Computer
Organization of a Computer
Communicating With the Computer
Computer Systems

Before You Leap

Exercises

P N e
onpwN =

2 WRITING AND RUNNING BASIC PROGRAMS

2.1 Steps In Writing Computer Programs
2.2 Process of Running BASIC Programs
Exercises

PART Il MINIMAL BASIC

3 FUNDAMENTALS OF BASIC

3.1 Elements of BASIC

3.2 Variables and Constants
3.3 END Statement

3.4 LET Statement

vii

10
17
20
22
24

25

25
31
36

39

40
42
46
46

xiii

xiv

Contents

3.5
3.6
3.7

PRINT Statement

REM Statement

Automobile Financing Program
Additional Exercises

4 ADDITIONAL INPUT AND OUTPUT

41
4.2
4.3
4.4
4.5
4.6
4.7

INPUT Statement

READ and DATA Statements

RESTORE Statement

Processing String Variables

PRINT Statement and the TAB Function
Bank Savings Account Program
Common Errors

Additional Exercises

5 INTRODUCTION TO CONTROL STATEMENTS

5.1
5.2
5.3
5.4
5.5

6 ADDITIONAL CONTROL CONCEPTS AND STATEMENTS

6.1
6.2
6.3
6.4
6.5
6.6
6.7

GO TO Statement
IF/THEN Statement
FOR/NEXT Loops
Accumulating A Sum
Common Errors
Additional Exercises

Nested FOR/NEXT Loops
DO-UNTIL Loops
Last-Record-Check (LRC) Loops
ON/GO TO Statement

STOP Statement

Interactive Price Quotation Program
Common Errors

Additional Exercises

7 ONE-DIMENSIONAL ARRAYS

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Motivation

Subscripts

DIM Statement

Read, Input, and Output
Manipulating Arrays
Selected Applications
Common Errors
Additional Exercises

54
64
66
68

72

73
78
82
84
88
91
95
98

106

106
107
115
127
131
134

147

147
152
156
159
163
165
170
171

187

188
190
193
196
200
205
216
218

Contents

8 TWO-DIMENSIONAL ARRAYS

9

10

11

12

8.1 Motivation

8.2 Subscripts

8.3 DIM Statement

8.4 Read, Input, and Output

8.5 Manipulating Arrays

8.6 Selected Applications

8.7 Common Errors
Additional Exercises

FUNCTIONS AND SUBROUTINES

9.1 BASIC-Supplied Functions
9.2 User-Defined Functions
9.3 Subroutines
9.4 Automobile Rental Decision Program
9.5 Common Errors
Additional Exercises

PART Il ENHANCED BASIC

FORMATTED OUTPUT

10.1 PRINT USING and Image Statements
10.2 Types of Output Fields
10.3 Sales Commissions Revisited
10.4 Common Errors
Additional Exercises

DATA FILES

11.1 File Instructions
11.2 Data Processing Applications
11.3 Common Errors

Additional Exercises

MATRIX OPERATIONS

12.1 MAT READ, INPUT, and PRINT Statements
12.2 Matrix Functions
12.3 Algebraic Operations
12.4 Common Errors
Additional Exercises

Xv

226

226
227
228
229
235
238
247
247

256

257
264
268
275
282
282

295

295
297
304
305
306

307

308
316
321
321

325

326
326
326
345
346

xvi

Contents

PART IV MODULES

A DEBUGGING PROGRAMS

A.1 Error Detection and Correction
A.2 lllustration

STRUCTURED PROGRAMMING AND OTHER TOPICS

B.1 On Designing Better Programs

B.2 Pseudocode

B.3 Modular Programming

B.4 Top Down Design

B.5 Structured Programming
Additional Exercises

SELECTED CASE STUDIES

C.1 Case I: Replacement Consultants, Inc.
C.2 Case Il: ARMS-Automated Repair and Maintenance System
C.3 Case lll: Inventory Simulation Associates, Inc.

ANSWERS TO SELECTED FOLLOW-UP EXERCISES
INDEX

A-1
A-1
A-4
B-1

B-1
B-6
B-8
B-10
B-14
B-23

C-1
C-1

C-11

AS-1
I-1

PART 1

Foundations

Chapter 1 Orientation
2 Writing and Running BASIC Programs

CHAPTER 1

Orientation

1.1 WHAT IS A COMPUTER?
Characteristics of Electronic Computers
Computer Classifications

1.2 IMPACT OF THE COMPUTER
Historical Sketch
Applications
Assessment

1.3 ORGANIZATION OF A COMPUTER
Input Units
Central Processing Unit (CPU)
Output Units
Secondary Storage

1.4 COMMUNICATING WITH THE COMPUTER
Procedure- and Problem-Oriented Languages
Assembly and Machine Languages
Interpreters and Compilers

1.5 COMPUTER SYSTEMS
Hardware and Software
Batch versus Time-Shared Processing

1.6 BEFORE YOU LEAP
Objectives
Advice

EXERCISES

The electronic computer is one of humankind’s foremost technological inventions; for
good or for bad, its presence affects each of us, and its future holds even more potential
to affect our lives.

This chapter is an orientation to the course you are about to take. We first define

4 Orientation

the computer and discuss its impact. Thereafter we provide a relatively complete,
nontechnical overview of what makes up a computer system and a preview of how to
communicate with the computer. Finally, we outline how you will benefit from this
course.

If you are warm-blooded and living in the twentieth century, then we suspect that
you are curious about the computer. Hopefully, by the time this course is over, we
(together with your, instructor) will have helped you translate that curiosity into a
continuing, productive, and rewarding experience.

1.1
WHAT IS A COMPUTER?

A computer can be defined most generally as a device which is capable of manipulating
data to achieve some task. Given this definition, adding machines, cash registers,
gasoline pumps, and electronic calculators all qualify as simple computers. The ma-
chine we usually think of as a computer, however, can be identified by four significant
characteristics:

1. Electronic

2. Speed

3. Storage capability

4. Ability to execute stored instructions

Characteristics of Electronic Computers

The great speed of today’s computers is a direct result of miniaturization in solid-state
electronics. To give you a rough idea of the speed capabilities of large electronic com-
puters, consider the following estimates. One minute of computer time is equivalent to
approximately 6700 hours of skilled labor by a person using a calculator. In other words,
a person using a calculator would take one hour to accomplish what a computer can
accomplish in less than one hundredth of a second. In fact, the electronic transfers
within computers are so fast that computer designers use a basic unit of time equal to
one billionth of a second (called a nanosecond)—quite a feat when you consider that the
basic unit of time for us mortals is one second.

A second significant characteristic of electronic computers is their capacity to store
large amounts of data and instructions for later recall. In other words, much like the
human brain, the computer has ‘*‘memory.’”’” For example, computers at most univer-
sities can store several million characters of data in primary storage and hundreds of
millions of characters in secondary storage.

Finally, an electronic computer is differentiated from most other computing de-
vices by its ability to store instructions in memory. By this we mean that the computer
can execute a set of instructions without interference from human beings. This charac-
teristic makes the computer efficient: it can do its thing automatically while we do

something else. Of course, the computer cannot completely do without us, but more
about that later.

Computer Classifications

To further narrow the definition of an electronic computer, we make the following
distinctions: analog versus digital computers and special-purpose versus general-
purpose computers.

What Is a Computer? 5

The analog computer manipulates data represented by continuous physical pro-
cesses such as temperature, pressure, and voltage. The fuel injection system of an
automobile, for example, deals with physical processes as it regulates the fuel/air ratio
in the carburetor based on engine speed, temperature, and pressure; the gasoline pump
converts the flow of fuel into price (dollar and cents) and volume (gallons to the nearest
tenth). Not surprisingly, therefore, analog computers are used primarily to control such
processes. For example, analog computers now control the production of products such
as steel and gasoline, provide on-board guidance for aircraft and spacecraft, regulate the
peak energy demands of large office buildings or factories, and monitor the vital life
signs of patients in critical condition.

As a strict computational device, however, the analog computer lacks the precision
one needs with counting. Place yourself in the role of a computer which has the task of
adding the numbers 1 and 2. Your props are a ruler, pencil, paper, and a jar of beads.
You might proceed with your task as follows: first, you take out one bead from the jar
and place it on the paper; next, you take out two beads from the jar and place them on
the paper; finally, you count the number of beads you have on the paper. Exactly three,
right? Now, be an analog computer. With pencil, paper, and ruler, draw a line one inch
in length; next, draw a two-inch line at the end of the one-inch line you drew earlier;
now measure the length of this overall line. Is your line exactly three inches long? Not
really, only approximately three, for the accuracy of your answer depends on the preci-
sion of the scale on the ruler, the steadiness of your hand, the acuteness of your
eyesight, and the sharpness of your pencil point. When it comes to calculating, the
counting approach based on beads is more accurate than the approach based on
measurement.

You will be using the digital computer, which operates by counting digits. This type
of computer manipulates data (numbers in our decimal system, letters in our alphabet,
and special characters) by counting binary (two-state or 0-1) digits. Hybrid computers
which combine the features of digital and analog computers have been designed for
certain types of applications, such as the analysis of aircraft designs which are tested in
wind tunnel experiments.

We have been classifying computers by how they process data, but we can also
classify them according to their function. Special-purpose computers are designed to
accomplish a single task, whereas general-purpose computers are designed to accept
programs of instruction for carrying out different tasks. For example, one special-
purpose computer has been designed strictly to do navigational calculations for ships
and aircraft. The instructions for carrying out this task are built into the electronic
circuitry of the machine so that the navigator simply keys in data and receives the
answer. Other special-purpose computers include those used in color television sets to
improve color reception; those used in personal business exchange (PBX) telephones to
perform various functions, such as automatic placement of a call at a preset time and
simplified dialing of frequently used phone numbers; and those used in automobiles to
calculate items such as ‘‘miles of fuel left”” and ‘‘time of destination,’’ and to monitor
and read out instantaneously the status of oil level, gasoline level, engine temperature,
breakline wear, and other operating conditions.

In contrast, a general-purpose computer used by a corporation might accomplish
tasks relating to the preparation of payrolls and production schedules and the analyses
of financial, marketing, and engineering data all in one day. Similarly, the academic

