,GRADUATE TEXTS IN COMPUTER SCIENCE

Verification of
Sequential and

Concurrent Programs

®): Springer

\T’}‘" D ¥)

Krzysztof R. Apt
Ernst-Riidiger Olderog

SeconDp EDpITION

3950389

Krzysztof R. Apt Ernst-Riidiger Olderog

VERIFICATION OF SEQUENTIAL
AND CONCURRENT PROGRAMS

Second Edition

il

|

E9960389

Il

) Springer

Krzysztof R. Apt

Stichling Mathematisch Centrum
Centrum voor Wiskunde en Informatica
Kruislaan 413

1098 SJ Amsterdam

Amsterdam, The Netherlands

Ernst-Riidiger Olderog

Christian Albrechts University
Fachbereich 10-Theoretische Informatik
2900 Oldenburg

Oldenburg, Germany

Series Editors

David Gries
Fred B. Schneider

Department of Computer Science
Cornell University

Upson Hall

Ithaca, NY 14853-7501, USA

Library of Congress Cataloging-in-Publication Data
Apt, Krzysztof R., 1949-
Verification of sequential and concurrent programs / Krzysztof R.
Apt, Ernst-Riidiger Olderog. — 2nd ed.
p. cm. — (Graduate texts in computer science)
Includes bibliographical references and indexes.
ISBN 0-387-94896-1 (hardcover : alk. paper)
1. Computer software—verification. |. Olderog, E.-R.
IIl. Title. 1ll. Series: Graduate texts in computer science
(Springer-Verlag New York Inc.)
QA76.76.v47A67 1997
005.1"4—dc21 96-29771

Printed on acid-free paper.

© 1991, 1997 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher
(Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with
reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially
identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may
accordingly be used freely by anyone.

Production managed by Allan Abrams; manufacturing supervised by Johanna Tschebull.
Photocomposed copy provided from the authors’ LaTeX file.

Printed and bound by Hamilton Printing Co., Rensselaer, NY.

Printed in the United States of America.

987654321

ISBN 0-387-94896-1 Springer-Verlag New York Berlin Heidelberg SPIN 10523521

Preface

Computer programs are becoming more and more part of systems that we
use or rely on in our daily lives. Numerous examples include booking termi-
nals in travel agencies, automatic teller machines, ever more sophisticated
services based on telecommunication, signaling systems for cars and trains,
luggage handling systems at airports or automatic pilots in airplanes.

For the customers of travel agencies and banks and for the passengers of
trains and airplanes the proper functioning and safety of these systems
is of paramount importance. Money orders should reflect the right bank
accounts and the airplanes should stay on the desired route. Therefore the
underlying computer programs should work correctly; that is they should
satisfy their requirements. A challenge for computer science is to develop
methods that ensure program correctness.

Common to the applications mentioned above is that the computer pro-
grams have to coordinate a number of system components that can work
concurrently, for example the terminals in the individual travel agencies ac-
cessing a central database or the sensors and signals used in a distributed
railway signaling system. So to be able to verify such programs we need
to have at our disposal methods that allow us to deal with correctness of
concurrent programs, as well.

vi

Preface

Structure of This Book

The aim of this book is to provide a systematic exposition of one of the
most common approaches to program verification. This approach is usually
called assertional, because it relies on the use of assertions that are attached
to program control points. Starting from sequential programs we proceed in
a systematic manner to concurrent programs, both parallel and distributed.

We consider here sequential programs in the form of deterministic and
nondeterministic programs, and concurrent programs in the form of paral-
lel and distributed programs. Parallel programs consist of several sequential
components that can access shared memory. By contrast, distributed pro-
grams consist of components with local memory that can communicate only
by sending and receiving messages.

For each of these classes of programs their input/output behavior in the
sense of so-called partial and total correctness is studied. For the verification
of these correctness properties an axiomatic approach involving assertions
is used. This approach was initiated by Hoare in 1969 for deterministic
programs and extended by various researchers to other classes of programs.
It is combined here with the use of program transformations.

For each class of programs a uniform presentation is provided. After defin-
ing the syntax we introduce a structured operational semantics as origi-
nally proposed by Hennessy and Plotkin in 1979 and further developed by
Plotkin in 1981. Then proof systems for the verification of partial and total
correctness are introduced.

The use of these proof systems is demonstrated with the help of case studies.
In particular, solutions to classical problems such as producer/consumer
and mutual exclusion are formally verified. Each chapter concludes with a
list of exercises and bibliographic remarks.

The exposition assumes elementary knowledge of programming languages
and logic. Therefore this book belongs to the area of programming lan-
guages but at the same time it is firmly based on mathematical logic. All
prerequisites are provided in the preparatory Chapter 2.

In Chapter 3 Hoare’s approach to program verification is explained for
a simple class of deterministic sequential programs, known as while-
programs. Next parallel programs with shared variables are studied. Since
these are much more difficult to deal with, they are introduced in a stepwise
manner in Chapters 4, 5 and 6. We base our presentation on the approach
by Owicki and Gries originally proposed in 1976 and on an extension of it
by the authors and de Boer dealing with total correctness.

Nondeterministic sequential programs are studied in Chapter 7. The pre-
sentation is based on the work of Dijkstra from 1976 and Gries from 1981.

Preface vii

Study of this class of programs also serves as a preparation for dealing with
distributed programs in Chapter 8. The verification method presented there
is based on a transformation of distributed programs into nondeterministic
ones proposed by the first author in 1986. In Chapter 9 the issue of fairness
is studied in the framework of nondeterministic programs. The approach
is based on the method of explicit schedulers developed by the authors in
1983.

Teaching from This Book

In the first lecture the zero search example in Chapter 1 should be dis-
cussed. This example demonstrates which subtle errors can arise during
the design of parallel programs. Next we recommend moving on to Chap-
ter 3 on deterministic programs and before each of the sections on syntax,
semantics and verification, to refer to the corresponding sections of the
preparatory Chapter 2.

Afterwards the treatment of parallel programs in Chapters 4, 5 and 6 can
follow. Then, after a short presentation of Chapter 7 on nondeterministic
programs, Chapter 8 on distributed programs can be treated. Alternatively,
it is possible to skip Chapters 4 — 6 and move immediately to Chapters 7
and 8.

Chapter 9 on fairness covers a more advanced topic and can be used during
specialized seminars.

Changes in the Second Edition

The first edition of this book appeared in the series entitled “Texts and
Monographs in Computer Science.” The series title reflected both aspects
of the book: it could be used as a textbook and some parts of it had a
monographic character.

This edition of the book appears in the series entitled “Graduate Texts
in Computer Science” and reflects the shift of emphasis. It is aimed to be
used as a textbook and consequently it substantially differs from the first
edition. In particular:

e The book has been substantially shortened. This makes it possible
to use it in its entirety as a textbook for a one semester course on
program verification.

viii

Preface

e The order of the chapters has been rearranged. In this edition the
presentation of nondeterministic programs (previously Chapter 4) has
been moved and appears now as Chapter 7. In this way parallelism
is introduced earlier and the transition from deterministic programs
(Chapter 3) to parallel programs (Chapters 4-6) and from nondeter-
ministic programs (Chapter 7) to distributed programs (Chapter 8) is
smoother.

e The subject of systematic program derivation from specifications is
now introduced earlier, in Chapter 3. This recognizes the growing
importance of this field.

e Various points, such as the discussion of the proof rules and of seman-
tics, are more systematically explained and amplified. In particular,
there is a clearer presentation of the completeness proofs in Chapter
3.

e In our view fairness is a more advanced topic the study of which can
be skipped in a basic course on program verification. However, it is an
important concept pervading many areas of computing. In Chapter
9 we deal with program verification under the fairness assumption
in its simplest setting: that of nondeterministic programs studied in
Chapter 7. The method provided there can be used for a study of
various fairness notions for several classes of programs, including all
those studied in this book.

This edition of the book follows in many ways its German edition which
appeared as a textbook in the series “Springer-Lehrbuch” in 1994. It reflects
our experiences in teaching a course on program verification to graduate
students at the Universities of Amsterdam, Oldenburg and Pisa.

Acknowledgments

The authors of this book have collaborated, often together with other
colleagues, on the topic of program verification since 1979. During this
time we have benefited very much from discussions with Jaco de Bakker,
Frank de Boer, Luc Bougé, Ed Clarke, Edsger W. Dijkstra, Nissim Francez,
David Gries, Tony Hoare, Shmuel Katz, Leslie Lamport, Hans Langmaack,
Jay Misra, Amir Pnueli, Gordon Plotkin, Willem Paul de Roever, Fred
Schneider, Jonathan Stavi and Jeffery Zucker. Many thanks to all of them.

Also, we would like to thank Franco Turini for useful comments on this
version of the book. Most of the IATEXscript of the first edition was typeset
by Thomas Woo at the University of Texas at Austin. The changes for this

Preface ix

second edition were performed by the authors themselves with the expert
assistance of Arvid Hiilsebus and Christian Kiihnke at the University of
Oldenburg. The bibliography style used in this book has been designed by
Sam Buss; Anne Troelstra deserves credit for drawing our attention to it.

Finally, we would like to thank the staff of Springer-Verlag, in particu-
lar Allan Abrams and Martin Gilchrist, for the efficient and professional
handling of all the stages of the production of this book.

Amsterdam, The Netherlands Krzysztof R. Apt
Oldenburg, Germany Ernst-Ridiger Olderog

Contents

Preface

1 Introduction

1.1 An Example of a Concurrent Program

Solution 1.
Solution 2.
Solution 3.
Solution4
Solution 5.
Solution 6.
1.2 Program Correctness

1.3 Structure of This Book

2 Preliminaries

Functions
Sequences
Strings

Proofs

-

© 00 N O e W N

................... 12

xii

Contents

INduction, « = « « = s« + « s 32 @ mwme v s s s s b m 22
Grammars . s .. : 3 s s A EEF FEE S § FF s s 8 EE s 24

2.2 Typed Expressions, 24
TYPES s s spmm s 15 33 s G mE EE©E©E & § 5% 68880 24
Variables: ¢ s 5 o ¢ ¢ o s s son s s s s a5 65 855 585000 25
Constants 25
Expressions o 26
Subscripted Variables 28

2.3 Semantics of Expressions 28
Fixed Structure 28
States 29
Definition of the Semantics 30
Updates of States 32

2.4 Formal Proof Systems 33
<25 Assertions 34
2.6 Semantics of Assertions 36
2.7 Substitution L Lo 37
2.8 Substitution Lemma L. 40
2:9 EXEICISES # w i is 5 1 5 8 5 5 6 5 5 5 w o io o o 0 o an 43
2.10 Bibliographic Remarks 45
3 Deterministic Programs 47
3.1 Syntax 48
32 SeMantiCs « o « w5 ¢ 5+ 5 5 8 5 5 HE T E G e . o e . 49
Properties of Semantics 54

3.3 Verification L. 55
Partial Correctness 57
Total Correctness 63
Soundness, 65

3.4 Proof Outlines 71

Contents xiii

Partial Correctness 72
Total Correctness 76

3.5 Completenesso 78
3.6 Auxiliary Axioms and Rules 85
3.7 Systematic Development of Correct Programs 87
Summation Problem o0 88

3.8 Case Study: Minimum-Sum Section Problem 90
39 Ex6rcises s s s ssmw @ ¢ 5 8 ¥ 5 6B M S @E 8 5 5 5 5 b8 94
3.10 Bibliographic Remarks 98
4 Disjoint Parallel Programs 101
41 Syntax s s mssmEe s 5 i 5 EBEEESE F 5§ 5 8 e 102
4.2 Semantics L 103
Determinism L. 105
Sequentialization « « w s 2 s 5 ;s s B EwE R g 5558 b8 108

43 Verification L. oL, 110
Parallel Composition 110
Auxiliary Variables 112
Soundness 115

4.4 Case Study: Find Positive Element 118
45 Exercises 122
4.6 Bibliographic Remarks 123
5 Parallel Programs with Shared Variables 125
5.1 Access to Shared Variables 126
5.2 Syntax 127
53 Semantics 129
ALOMICIEY: o5 5 5 5 5 5 55 7 55 5 5 5 ;o mmmom e s o v o o 130

5.4 Verification: Partial Correctness 132
Component Programs 132

No Compositionality of Input/Output Behavior 133

Xiv

Contents

5.5

5.6
5.7
5.8

5.9

Parallel Composition: Interference Freedom
Auxiliary Variables Needed
SOUNAAESS : : « cmmmmmen £ 8 s 5 s s wmamen s €8 5 3
Verification: Total Correctness
Component Programs
Parallel Composition: Interference Freedom
Soundness
DISCUSSION : : s spmumpwe s 2 355 6 eBE R @8 5§35 § 8
Case Study: Find Positive Element More Quickly

Allowing More Points of Interference
Case Study: Parallel Zero Search
Step 1. Simplifying the program
Step 2. Proving partial correctness

Exercises

6 Parallel Programs with Synchronization

6.1
6.2
6.3

6.4
6.5

SYMBAX & 5 ¢ 5 5 5 55 BB 6 e 0 o o 0 n e o s .

Case Study: Producer/Consumer Problem
Case Study: The Mutual Exclusion Problem
Problem Formulation
Verification L
A Busy Wait Solution
A Solution Using Semaphores

Contents XV

6.6 Allowing More Points of Interference 197
6.7 Case Study: Synchronized Zero Search 199
Step 1. Simplifying the Program 200

Step 2. Decomposing Total Correctness 201

Step 3. Proving Termination 201

Step 4. Proving Partial Correctness 206

68 Exercises w : s s s s v vwwm ols 5 5 5 5 8 mg @@ we 6§y 209
6.9 Bibliographic Remarks 210
7 Nondeterministic Programs 213
Tl Syitax o : : : : : somwmE s s £ 5§ SR PHER T 55 ¥ 214
T2 Semantics : s : : 5 s s 9 B a6 § 8 5 5 6 b b m@ s 8 8 5 s 215
Properties of Semantics 216

7.3 Why Are Nondeterministic Programs Useful? 218
Symmetry 218
Failires : : : ¢ s sossmuwas 255 s s spummesss i 219
Nondeterminism 219
Modeling Concurrency 220

7.4 Verification L 221
7.5 Case Study: The Welfare Crook Problem 224
7.6 Transformation of Parallel Programs 227
U7 BEXEICISES . i « s wwwwmwm s'8: 5 85 Bammsd 8 85§ oo 230
7.8 Bibliographic Remarks 232
8 Distributed Programs 235
81 Syntax 236
Sequential Processes 236
Distributed Programs 238

82 Semantics 241
8.3 Transformation into Nondeterministic Programs 243

xvi

Contents

Semantic Relationship Between S and T'(S) 244
Proof of the Sequentialization Theorem 246

84 Verification. : : s s s www s ¢+ s smusmagmws s 556 252
Partial Correctness 253
Weak Total Correctness 254
Total Correctness 255
Proof SYstes - o s swwe + s s s wmmmosE® 2 § 3 5 5 5 256
Discussion : s swm s e s 5 s s manmas s 5 5 5 b s 258

8.5 Case Study: A Transmission Problem 259
Step 1. Decomposing Total Correctness 260
Step 2. Proving Partial Correctness 260
Step 3. Proving Absence of Failures and of Divergence . . 263

Step 4. Proving Deadlock Freedom 264

86 EXEICISES : : s s nmmem e 5 5 s 4 GG @ HE 56 & o v 0 o s 266
8.7 Bibliographic Remarks 269
9 Fairness 271
9.1 The Concept of Fairness 272
Selectionsand Runs 274

Fair Nondeterminism Semantics 275

9.2 Transformational Semantics. 276
9.3 Well-Founded Structures 277
9.4 Random Assignment 278
SEMantiCs s s s ¢ s m o @ m @5 ¢ & 5 5 5 5 50 b 5w w0 e o 279
Verffication : . s & s w5 5 56 4 5 0 v v mm v o 279

9.5 Schedulers 283
The Scheduler FAIR 286

The Scheduler RORO 289

The Scheduler QUEUE 290

9.6 Transformation 292
9.7 Fairness: Verification. 295

Contents XVii

Fair Total Correctness 295
Soundness e e e e e e e e e e e e e 304

9.8 Case Study: Zero Search 307
9.9 Case Study: Asynchronous Fixed Point Computation . . 312
9.10 Exercises i e e e e 319
9.11 Bibliographic Remarks 322
Semantics 325
Axioms and Proof Rules 327
Proof Systems 335
Proof Outlines 339
References 343
Author Index 353
Subject Index 357

Symbol Index 363

Introduction

Program verification is a systematic approach to proving the correctness
of programs. Correctness means that the programs enjoy certain desirable
properties. For sequential programs these properties are delivery of correct
results and termination. For concurrent programs, that is, those with sev-
eral active components, the properties of interference freedom, deadlock
freedom and fair behavior are also important.

The emphasis in this book is on verification of concurrent programs, in
particular of parallel and distributed programs where the components com-
municate either via shared variables or explicit message passing. Such pro-
grams are usually difficult to design, and errors are more a rule than an
exception. Of course, we also consider sequential programs because they
occur as components of concurrent ones.

1.1 An Example of a Concurrent Program

To illustrate the subtleties involved in the design of concurrent programs
consider the following simple problem.

2

1,

Introduction

Problem Let f be a function from integers to integers with a zero. Write
a concurrent program ZFRO that finds such a zero.

The idea is to solve the problem by splitting it into two subproblems that
can be solved independently, namely finding a positive and a nonpositive
zero. Here z is called a positive zero of f if z > 0 and f(z) = 0, and it
is called a nonpositive zero if z < 0 and f(z) = 0. We are now looking
for sequential programs S; and S, solving the two subproblems such that
the parallel execution of S; and S, solves the overall problem. We write
[S1]|S2] for a parallel composition of two sequential programs S; and Ss.
Execution of [S||Sz] consists of executing the individual statements of S,
and Sz in parallel. The program [S]|S;] terminates when both S; and Ss
terminate.

Solution 1

Consider the following program S;:

81 = found := false; z :=0;
while - found do
r:=xz+1;
found := f(z) =0
od.

S1 terminates when a positive zero of f is found. Similarly, the following
program Sy terminates when a nonpositive zero of f is found:

Sy = found := false; y :=1;
while = found do
yi=y—1
found := f(y) =0
od.

Thus the program
ZERO-1 = [54]|S2],

the parallel composition of S; and S2, appears to be a solution to the
problem. Note that the Boolean variable found can be accessed by both
components S; and Ss. This shared variable is used to exchange information
about termination between the two components. O

