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Preface

This book had its origins in a General Methodology Lecture presented at
the annual meetings of the American Statistical Association at Los
Angeles in 1966. A more concrete format for the book emerged from a
paper (see Gnanadesikan & Wilk, 1969) presented at the Second Interna-
tional Symposium on Multivariate Analysis held at Dayton in June, 1968.
That paper provided an outline of objectives for organizing the material
in the present book, although the coverage here is more up to date,
extensive, and detailed than the one in the paper. Specifically, the book is
concerned with the description and discussion of multivariate statistical
techniques and concepts, structured according to five general objectives in
analyzing multiresponse data. The methods and underlying concepts are
grouped according to these five objectives, and a chapter of the book is
devoted to each objective.

The book is intended to emphasize methodology and data-based in-
terpretations relevant to the needs of data analysis. As such, it is directed
primarily toward applied statisticians and users of statistical ideas and
procedures in_ various scientific and technological disciplines. However,
some issues, arising especially out of the newer techniques described in
the book, may be of interest to theoretical statisticians. Also, there are
algorithmic aspects of the procedures which numerical analysts may find
“interesting.

Portions of -the material in this book have been used by the author as
the basis for a graduate-level series of lectures presented at Imperial
College of Science & Technology of the University of London in 1969
and at Princeton University in 1971. Although the book can thus serve as
a text, it differs from standard textbooks in not containing exercises. In
view of the orientation of the book, the natural exercises would be to
analyze specific sets of data by using the méthods described in the text.
However, rather than setting such exercises, which often tend to be
artificial, it would seem to be far more useful to expect the students to use
the relevant techniques on any real problems which they encounter either
in their own work or in the course of their being consulted for statistical
advice on the problems of others. Also, for making the purpose and
usefulness of a technique more apparent, illustrative examples are used.
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Vi PREFACE

Such examples appear throughout the book and constitute an important
facet of the presentation.

The coverage in this book is mainly of relatively recent (i.c., within the
last decade) developments in multivariate methodology. When more
classical techniques are described, the intention is either to provide
more natural motivation for a recent concept or method or to attempt a
more complete discussion. A thorough review of all multivariate techni-
ques is not a goal of the book. Specifically, for instance, no attention is
given here to the analysis of multiple time series.

Despite the intention to emphasize relatively recent developments, tht
book inevitably reflects the fact that it was written over a period of six or
seven years that have seen a spate of publications on multivariate topics.
For instance. whereas material on cluster analysis written from a statisti-
cal viewpoint was relatively sparse when Chapter 4 of this book was
conceived. there have been several recent articles and even whole books
(e.g.. Everitt. 1974; Hartigan, 1975) on this topic.

I am grateful to Bell Telephone Laboratories for its support of my
efforts in writing this book and for providing so many important facilities
without which the task could not have been undertaken. I also thank
Imperial College and Princeton University for providing me with the
stimulus and opportunity to organize the material for this book. It is a
particular pleasure to acknowledge the many valuable comments of
Professor D. R. Cox at the time of these lectures at Imperial College.
Thanks are due also to my colleague Dr. J. R. Kettenring for his
willingness to use parts of this material in a course that he taught and tor
his several helpful comments, based partly on the experience. I am deeply
indebted to many past and present colleagues for their collaborativc
research efforts with me, which are reflected in various parts of this book.
I wish also to acknowledge the kind permissions of other authors, several
journals and publishers (including Academic Press, the American Statisti-
cal Association, Biometrics, the Biometrika Trustees, the Institute of
Mathematical Statistics, Methuen & Co., Pergamon Press, Psychometnika.
Statistica Neerlandica, and Technometrics) to incorporate material pub-
lished elsewhere.

I am grateful to Mrs. M. L. Culp, Miss D. A. Williams, and Mrs. J.
Charles for their careful typing of different parts of the manuscript. and
the assistance of Messrs. I. L. Patterson and J. L. Warner in collating the
exhibits 1s gratefully acknowledged.

Finally, I express my deepest sense of gratitude to my wife not only for
her valuable comments but also for her constant encouragement during

the writing of the book.

. R. GNANADESIKAN
Murray Hill, New Jersey

January 1977
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CHAPTER 1

Introduction

Most bodies of data involve observations associated with various facets
of a particular background, environment. or experiment. Therefore. in a
general sense, data are always multivariate in character. Even in a narrow
sense, when observations on only a single response variable age to be
analyzed, the analysis often leads to a multivariate situation. For example,
in multiple linear regression, or in fitting nonlinear models, cven with a
single dependent variable, one often is faced with correlations among the
cstimated coefficients, and analyzing the correlation structure for possibic
reparametrizations of the problem is not an uncommon venture.
~ For the purposes of the present book, a more limited definition of
multivariate situation is used: multiresponse (or multivariate) problems
are those that are concerned with the analysis of n points in p-space. i.¢c..
when each of n persons, objects, or experimental units has associated
with it a p-dimensional vector of responses. The experimental units need
not necessarily constitute an unstructured sample but, in fact, may have
superimposed design structure, i.e., they may be classified or identified by
various extrancous variables. One essential aspect of a multivariate
approach to the analysis of such multiresponse problems is that, although
one may choose to consider the p-dimensional observations from ohjyect
1 object as being statistically independent, the observed componcents
withm each vector will usually be statistically related. Exploitation of the
fatter feature to advantage in developing more sensitive statistical anal-
yses ol the observations is the pragmatic concern and value of a mul-
tivariate approach.

Most experimenters probably realize the importance of a multivariate
approach, and most applied statisticians are equally well aware that
multivariate analysis of data can be a difficult and frustrating problem.
Some users of multivariate statistical techniques have, with some justitica-
tion. even asserted that the methods may be unnecessary, unproductive.,
or misguided. Reasons for the frustrations and difficulties characteri-tic ot
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2 INTRODUCTION

multivariate data analysis, which often far exceed thpse encountered in
univariate circumstances, appear to include the following:

1. It seems very difficult to know or to develop an understanding of
what one really wants to do. Much iteration and interaction is required.
This is also true in the uniresponse case in real problems. Perhaps in the
multiresponse case one is simply raising this difficulty to the pth power!

2. Once a multiresponse yiew is adopted, there 'is no obvious
“natural’ value of p, the dimensionality of response. For any experimen-
tal unit it is always possible to record an almost indefinitely large list of
attributes. Any selection of responses for actual observation and analysis
is usually accomplished by using background information, preliminary
analysis, informal criteria, and experimental insight. On the other hand,
the number of objects or replications, n, will always have some upper
bound. Hence n may at times be less than p, and quite often it may not
be much greater. These dimensionality considerations can become crucial
in determining what analyses or insights can be attained.

3. Multivariate data analysis involves prodigious arithmetic and con-
siderable data manipulation. Even with modern high-speed computing,
many multivariate techniques are severely limited in practice as to
number of dimensions, p, number of observations, n, or both.

4. Pictures and graphs play a key role in data analysis, but with
multiresponse data elementary plots of the raw data cannot easily be
made. This limitation keeps one from obtaining the realistic primitive
stimuli, which often motivate uniresponse analyses as to what to do or
what models to try.

5. Last, but of great importance and consequence, points in p-space;
unlike those on a line, do not have a unique linear ordering, which
sometimes seems to be almost a basic human requirement. Most formal
models and their motivations seem to grasp at optimization or things to
order. There is no great harm in this unless, in desperation to achieve the
comfort of linear ordering, one closes one’s mind to the nature of the
problem and the guidance which the data may contain.

Much of the theoretical work in multivariate analysis has dealt with
formal inferential procedures, and with the associated statistical distribu-
tion theory, developed as extensions of and by analogy with quite specific
univariate methods, such as tests of hypotheses concerning location
and/or dispersion parameters. The resulting methods have often turned
out to be of very limited value for multivariate data analysis.

The general orientation of the present book is that of statistical data
analysis, concerned mainly with providing descriptions of the informa-
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tional content of the data. The emphasis is on methodology—on underly-
ing or motivating concepts and on data-based interpretations of the
methods. Little or no coverage is given to distribution theory results,
optimality properties, or formal or detailed mathematical proofs, or, in
fact, to fitting the methods discussed into the framework of any currently
known formal theory of statistical inference, such as decision theory or
Bayesian analysis.

The framework for the discussion of multivariate methods in this book
is provided by the following five general objectives of analyzing multi-
response data:

Reduction of dimensionality (Chapter 2).

Development and study of multivariate dependencxes (Chapter 3).
Multidimensional classification (Chapter 4).

Assessment of statistical models (Chapter 5).

Summarization and exposure (Chapter 6).

kool 2l

The classification of multivariate methods provided by these five objec-
tives is not intended to be in terms of mutually exclusive categories, and
some techniques described in this book may be used for achieving more
than one of the objectives. Thus, for example, a technique for reducing
dimensionality may also prove to be useful for studying the possible
internal relationships among a group of response variables.

With regard to the technology of data analysis, although it is perhaps
true that this is still in a very primitive state, some important aids either
are available or are under development. Raw computing power has grown
astronomically in recent years, and graphical display devices arc
now relatively cheap and widely available. Much more data-analytic
software is to be expected in the near future. Hardware-software config-
urations are being designed and developed, for both passive and interac-
tive graphics, as related to the needs of statistical data analysis. Graphical
presentation and pictorialization are important and integral tools of data
analysis. (See Gnanadesikan, 1973, for a discussion of graphical aids for
multiresponse data analysis.) A feature common to most of the methods
discussed in the subsequent chapters of this book is their graphical nature.
either implicit in their motivating ideas ot explicit in their actual output
and use.

In general, the mathematical notation used conforms to familiar con-
ventions. Thus, for instance, a, X, . . . denote column vectors; a’, x/,
row vectors; and A, Y, ..., matrices. Whenever it is feasible and not
unnatural, a distinction is made between parameters and random vari-
ables by using the familiar convention that the former are denoted by
Greek letters and the latter by letters of the English alphabet. Most of the
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concepts and methods discussed are, however, introduced in terms of
observed or sample statistics, i.e., quantities calculated from a body of
data. Statistics that are estimates of parameters are often denoted by the
usual convention of placing a hat () over the parameter symbol.

Equations, figures, and tables that occur as part of the main text are
numbered sequentially throughout the book. However, no distinction is
made between figures and tables when they occur in the context of an
example, and both are referred to as “‘exhibits.” Thus Exhibit 5a is a table
of numbers that appears in Example 5, whereas Exhibits 5b and ¢ both
are figures that are part of the same example.

A bibliography is included at the end of the book, and specific items of
it that are directly relevant to a particular chapter are listed at the end of
the chapter. An item in the bibliography is always cited by the name(s) of
the author(s) and the year of publication. Thus Gnanadesikan (1973),
Gnanadesikan & Wilk (1969), Kempthorne (1966), Tukey (1962), and
Tukey & Wilk (1966) are specifically relevant references for the present
chapter.



CHAPTER 2

Reduction of Dimensionality

2.1. GENERAL

The issue in reduction of dimensionality in analyzing multiresponse
data is between attainment of simplicity for understanding, visualization,
and interpretatidn, on the one hand, and retention of sufficient detail for
adequate representation on the other hand.

Reduction of dimensionality can lead to parsimony of description, of
measurement, or of both. It may also encourage consideration of mean-
ingful physical relationships between the variables, for example, sum-
marizing bivariate mass-volume data in terms of the ratio density =
mass/volume.

As mentioned in Chapter 1, in many problems the dimensionality of
response, p, is conceptually unlimited, whereas the number, n, of experi-
mental units available is generally limited in practice. By some criteria of
relevance, the experimenter always drastically reduces the dimensionality
of the observations to be made. Such reduction may be based on (i)
exclusion before the experiment; (ii) exclusion of features by specific
experimental judgment; (iii) general statistical techniques, such as princi-
pal components analysis (see Section 2.2), use of distance functions of -
general utility, and methods for recognizing and handling nonlinear
singularities (see Section 2.3); and/or (iv) specific properties of the
problem which #ndicate the choice of a particular (unidimensional) real-
valued function for analysis, e.g., relative weights for assigning an overall
grade in matriculation examinations.

The first two of these approaches lead to a reduction of measurement
in that the number of variables to be observed is diminished. The last two
will not, in general, result in reducing current measurements but may
reduce future measurements by showing that a subset of the variables is
‘“adequate™ for certain specifiable purposes of analysis. The major con-
cern of the present chapter is the discussion of some specific examples ot
the third approach in the list above.

5



6 REDUCTION OF DIMENSIONALITY 2.1

From the point of view of description, too severe:a reduction may be
undesirable. Meaningful statistical analysis is possible only when there has
not been excessive elimination. Clearly a dominant consideration in the
use of statistical procedures for the reduction of dimensionality is the
interpretability of the lower dimensional representations. For instance,
the use of principal components per se does not necessarily yield directly
interpretable measures, whereas a reasonable choice of a distance func-
tion will sometimes permit interpretation.

Circumstances under which one may be interested in reducing the
dimensionality of multiple response data include the following:

1. Exploratory situations in data analysis, for example, in psychologi-
cal testing results or survey questionnaire data, especially when there is
ignorance of what is important in the measurement planning. Here one
may want to screen out redundant coordinates or to find more ‘insightful
ones as a preliminary step to further analysis or data collection.

2. Cases in which one hopes to stabilize ‘‘scales’” of measurement
when a similar property is described by each of several coordinates, for
example, several measures of size¢ of a biological organism. Here the aim
is to compound the various measurements into a fewer number which
may exhibit more stable statistical properties.

3. The compounding of multiple information as an aid in significance
assessment. Specifically, one may hope that small departures from null
conditions may be evidenced on each of several jointly observed re-
sponses. Then one might try to integrate these noncentralities into a
smaller-dimensional space wherein their existence might be more sensi-
tively indicated. One particular technique that has received some usage is
the urnivariate analysis of variance applied to principal components.

4. The preliminary specification of a space that is to be used as a basis
for eventual discrimination or classification procedures. For example, the
raw information per object available as a basis for identifying people from
their speech consists, in one version of the problem, of a 15,000-
dimensional vector which characterizes each utterance! This array must
be condensed as a preliminary to further classification analysis.

5. Situations in which one is interested in the detection of possible
functional dependencies among observations in high-dimensional space.
This purpose is perhaps the least well defined but nevertheless is preval-
ent, interesting, and important.

Many problems and issues exist in this general area of transformation
of coordinates and reduction of dimensionality. These are problems of
concept as to what one hopes to achieve, of techniques or methods tc
exhibit information that may be in the data, of interpretations of the
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results of applying available techniques, and of mathematical or algorith-
mic questions related to implementation. Specifically, if one develops a
transformed or derived set of (reduced) coordinates, there is the question
of whether these can be given some meaning or interpretation that will
facilitate understanding of the actual problem. Similarly, it may or may
not be true that derived coordinates, or approximations to these, will be
directly observable. Sometimes such observability may occur with gains in
efficiency and simplicity of both experiment and analysis.

Another problem in this area is that of the commensurability of the
original coordinates and of the effect of this issue on a derived set of
coordinates. This is not, apparently, a problem in principle, since there is
no difficulty in dealing with functions of variables having different units.
However, if the functions are themselves to be determined or influenced
by the data, as in principal components analysis, some confusion may
exist. An example of the issue involved here is presented in Section 2.2.1.

In looking for a reduced set of coordinates, ciassical statistical
methodology has been largely concerned with derived coordinates that
are just linear transforms of the original coordinates. This limitation of
concern to linearity is perhaps due at least in part to the orientation of
many of the techniques toward multivariate normal distribution theory.
More recently, however, techmques have been suggested (Shepard,
1962a, b; Shepard & Carroll, 1966; Gnanadesikan & Wilk, 1966, 1969)
for nonlinear reduction of dimensionality. '

2.2. LINEAR REDUCTION TECHNIQUES

This section reviews briefly the classical linear reduction methods. First,
discussion is provided of principal components analysis, a technique
initially described by Karl Pearson (1901) and further developed by
Hotelling (1933), which is perhaps the most widely used multivariate
method. Second, concepts and techniques associated with linear factor
analysis are outlined. Both the principal factor methed due to Thurstone
(1931) and the maximum likelihood approach due to Lawley (1940) are
considered.

2.2.1. Principal Components Analysis

The basic idea of principal components anaiysis is to describe the
dispersion of an array of n points in p-dimensional space by introducing a
new set of orthogonal linear coordinates so that the sample variances of
the given points with respect to these derived coordinates are in decreas-
ing order of magnitude. Thus the first principal component is such that
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the projections of the given points onto it have maximum variance among
all possible linear coordinates; the second principal component has max-
imum variance subject to being orthogonal to the first; and so on.

If the elements of y'=(y, y2, ..., y,) denote the p coordinates of
observation, and the rows of the nXp matrix, Y', constitute the np-
dimensional observations, the sgmple mean vector and covariance matrix
may be obtained, respectively, from the definitions

= 1 !
y=(ylvy27""yP)=;1Ya (1)

1
S= ((S.,))——1 (Y-¥)Y-Y), (2)
where 1’ is a row vector all of whose elements are equal to 1, and Y' is an
nXp matrix each of whose rows is equal to §'. The pXxp sample
correlation matrix, R, is related to S by

R=D, 5 S Dy, 3)

where D5 is a pXp diagonal matrix whose ith diagonal element is
1s;for i=1,2,...,p.

A geometric interpretation of principal components analysis is as
follows: The inverse of the sample covariance matrix may be employed as
the matrix of a quadratic form which defines a family of concentric
ellipsoids centertd on the sample center of gravity; i.e., the equations

y-98'6y-9=c¢ 4

for a range of nonnegative values of c, define a family of concentric
ellipsoids in the p-dimensional space of y. The principal components
transformation of the data is just the projections of the observations onto
the principal axes of this family. The basic idea is illustrated, for the
two-dimensional case, in Figure 1. The orlglnal coordinates, (y;, y,), are
transformed by a shift of origin to the sample mean, (y,, ¥,), followed by
a rigid rotation about this origin that yields the principal component
coordinates, z,; and z,.

Algebraically, the principal components analysis involves finding the
eigenvalues and eigenvectors of the sample covariance matrix. Specific-
ally, far obtaining the first principal component, z;, what is sought is the
vector of coefficients, a'=(a,, as, ..., a,), such that the linear combina-
tion, @'y, has maximum sample variance in the class of all linear combina-
tions, subject to the normalizing constraint, a’a= 1. For.a given a, since
the sample variance of @'y is 2'Sa, the problem of finding a turns out to be
equivalent to determining a nonnull & such that the ratio a'Sa/a’a is
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Y2

(o} Y4

Fig. 1. Illustration of principal components with bivariate data.

maximized. It is well known that the maximum value of this ratio is the
largest eigenvalue, c,, of S, and the required solution for a is the
eigenvector, &;, of S corresponding to c;,.

After the first principal component has been determined, the next
problem is to determine a second normalized linear combination or-
thogonal to the first and such that, in the class of all normalized linear
functions of y orthogonal to ajy, the second principal component has
largest variance. At the next stage, one would determine a third nor-
malized linear combination with maximum variance in the class of all
normalized linear combinations orthogonal to the first two principal compo-
nents. The process may be repeated until p principal components have
been determined. The problem of determining the p principal compo-
nents is equivalent to determining the stationary values of the ratio
a'Sa/a'a for variation over all nonnull vectors, a. These stationary valucs
are known to be the eigenvalues, ¢;=c.=---=¢,=0, of §, and the
required principal components are provided by ajy, aiy, ..., and ay.
where ] is the normalized cigenvector of S corresponding to the eigen-
value, ¢;, for i=1, 2, ..., p. The ranked eigenvalucs are in fact just the
sample variances of the linear combinations of the original variables
specified by the cigenvectors.

The above results can also be related to the so-called spectral decom-
position (see, e.g., Rao, 1965, p. 36) of the matrix S: there exists an
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orthogonal matrix, A, such that S=AD, A' where D, is a diagonal matrix
with diagonal elements ¢, ¢;, ..., ¢,. The oolumns of A are the
eigenvectors 8;, 8,, ..., &, The prmcxpal component coordinates, which
for convenience are deﬁned to include a shift of origin to the sample
mean, are then specified by the transformation

z=A'(y-¥), 5
and the principal components transformation of the data is
Z=A(Y-Y). (6)

When transformed to the principal component coordinate system, the
observations have certain desirable statistical properties. For instance, the
sample variance of the observations with respect to the ith principal
component is a;Sa; = ¢, the ith largest eigenvalue of S, fori=1,2,..., p,
and the sum of the sample variances with respect to the derived
coordinates =Y¥_; ¢; = tr(S) = Y.f—, s; = sum of the variances with respect to
the original coordinates. Furthermore, because of the mutual orthogonal-
ity of the representations of the original observations in terms of the
principal component coordinates, the sample covariances (and hence the
sample correlations) between pairs of the derived variables are all 0. This
follows geometrically from the ‘orthogonal” nature of the two-
dimensional configuration of the projections of the observations onto
each member of every pair of principal component coordinates. Equival-
ently, it follows algebraically from the relationship that the sample
covariance between the ith and jth principal components coordinates =
aSa; = c;a}8; =0 since a; and a; (for i# j) are orthogonal.

The above geometrical, algebraic, and algorithmic descriptions have
been presented in terms of the covariance matrix. Clearly, if one standar-
dizes each coordinate by dividing by its sample standard deviation, then
the covariance matrix of the standardized variables is just the correlation
matrix of the original variables.. Thus the above discussion applies to
principal components analysis of the correlation matrix.

In light of the current state of the knowledge on numerically stable
computational methods, the recommended algorithm for performing the
eigenanalysis involved in obtaining the principal components is either the
so-called QR method applied to S or R (Businger, 1965), or the so-called
singular value decomposition technique performed on (Y—Y) or on the
standardized form, D;, (Y -Y) (Businger & Golub, 1969; Golub,
1968).

if the sample size, n, is not greater than the dimensionality, p, the
sample covariance matrix will be singular, corresponding to the fact that
all n points will lie on a hyperplane of dimension less than p. Within that
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linear subspace one can define a dispersion matrix and find its principal
components. This will be reflected in the eigenvalue analysis of the
singular covariance matrix, in that some of the eigenvalues will be 0. The
eigenvectors corresponding to the nonzero eigenvalues will give the
projections of the observations onto orthogonal coordinates within the
linear subspace containing the observations.

One hope in the case of principal components analysis is that the bulk
of the observations will be near a linear subspace and hence that one can
employ a new coordinate system of reduced dimension. Generally, inter-
est will lie in the coordinates along which the data show their greatest
variability. However, although the eigenvector corresponding to the
largest eigenvalue, for example, provides the projection of each point
onto the first principal component, the equation of the first principal
component coordinate is given by the conjunction of the equations of
planes defined by the remaining eigenvectors. More generally, if most of
the variability of a p-dimensional sample is confined to a g-dimensional
linear subspace, that subspace is described by the (p—q) elgenvectors
which correspond to the (p—q) “small” eigenvalues. For purposes of
interpretation—detection or specification of constraints on, or redun-
dancy of, the observed variables—it may often be the relations which
define near constancy (i.e., those specified by the smallest eigenvalues)
that are of greatest interest.

An important practical issue in eigenanalyses is that of judging the
relative magnitudes of the eigenvalues, both for isolating ‘negligibly
small” ones and for inferring groupings, if any, among the others. The
issue involves not only computdtional questions, such as the specification
of what constitutes a zero eigenvalue, but also questions of statistical
inference and useful insight. The interpretation of magnitude and separa-
tion of eigenvalues from a sample covariance matrix is considerably
"complicated by the sampling variation and statistical interdependence, as
exhibited even by the eigenvalues of a covariance matrix calculated from
observations from a spherical normal distribution. Although there are
- some tests of s:gmﬁcance, which have been proposed as formal inferential
aids, a real need exists for data-analytic procedures for studying the
configuration of a ccllection of sanmiple eigenvalues as a whole (see Section
6.2 for further discussion).

Clearly, principal components are not invariant under linear transfor-
mation, including separate scaling, of the original coordinates. Thus the
principal components of the covariance matrix are not the same as those
of the correlation matrix or of some other scaling according to measures -
of “importance.” Note, however, that the principal components of the
correlation matrix are invariant under separate scaling of the original



