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PREFACE

Nuclear magnetic resonance spectroscopy no doubt has been the most
influential physical method in organic chemistry. Therefore, it is likely that
an organic chemist will encounter at some time 'H NMR spectra that show
broad signals at room temperature. If that investigator were aware that a spin
exchange process might be taking place, the study of this phenomenon might
develop into an intriguing area of chemistry. However, many organic chemists
do not pay much attention to this kind of abnormality in their "H NMR
spectra. In my belief, this is because the organic chemists are not well trained
in this area; they usually consider the dynamic NMR technique to be special,
and only specialists can tackle the problem.

The reason for the paucity of knowledge in the dynamic NMR area must
be the fact that most of the existing books that deal with this topic generally
do so with emphasis on its physical aspects. If a book is written from the stand-
point of organic chemistry, it will serve to help familiarize organic chemists
with the area of dynamic NMR spectroscopy. This is the avowed purpose of
this book. The book is supposed to be instructive rather than given over to
exhaustive reviews. It therefore is my intention to include basic examples in
this book rather than to introduce very sophisticated examples.

Because dynamic NMR affords information on a dynamic process and
provides kinetic data, it is a useful tool when discussing the barrier separating
two states that are observable by NMR spectroscopy. The difficulty here is
that we know only the height of the barrier, but no information about the
ground state or transition state is available. Empirical force-field calculations
seem to hold promise in this regard, although the results of calculation may
not be correct quantitatively. Because it is very helpful for organic chemists
to be able to visualize both the ground and the transition states, visualization
of structures has been attempted whenever possible, including the results of
empirical force-field calculations, although they may be only approximations.

Some controversy exists regarding the reliability of kinetic parameters
obtained by the dynamic NMR method. The general belief is that, although the
free energy of activation obtained by the coalescence method is reliable, the
enthalpy and, especially, the entropy of activation can be erroneous. I agree
with this general view when applied to data published in the earlier days of
NMR spectroscopy, when approximations were crude. The entropy of activa-
tion obtained by the dynamic NMR method with the aid of total lineshape
analysis, however, often compares favorably with the corresponding AS*
values obtained by classical kinetics. It may be argued that the reliability of
entropy of activation values is always a problem even when they are determined
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vi PREFACE

by classical kinetic methods. However, the favorable agreement of the data
obtained by the two methods suggests that the dynamic NMR technique is at
least approaching the degree of reliability attained routinely by kinetic
methods. To avoid the problems inherent in the determination of AS*, the
free energy of activation is used almost exclusively in this book.

For the unit of energy, kcal mol™! is used throughout the book. The
reason for this is simply the fact that organic chemists are generally more
familiar with this unit than with kJ mol™!. In many of the chapters that deal
with dynamic NMR studies, various kinetic parameters are used other than
the free energy of activation. In some cases, I have converted them into free
energies of activation in kcal mol ™!, but in other cases 1 have left them in
their original units. For the convenience of readers, the methods by which
various Kinetic data are converted into free energy of activation are presented
in Appendix I. Some organic chemists may not be familiar with the specification
of conformations. Those who wish to familiarize themselves with commonly
used specification methods are referred to Appendix II.

Chapter 1 provides the introduction to the dynamic NMR techique. After
the minimal essential knowledge necessary for entering this field is provided,
various approximation methods for obtaining kinetic parameters are intro-
duced. Then, applications of the dynamic NMR technique to the study of
internal rotation, inversion of amines, and topomerization by dissociation
are reviewed briefly to afford a general idea of ways in which this technique has
been applied successfully. Finally, comparison of the kinetic data obtained
by the dynamic NMR method and by other methods is presented, together
with some caveats that are necessary when discussing the data. The caution
described here in reading the data is essential if misinterpretation of results is
to be avoided.

Chapter 2 describes rotation about a partial double bond. Because various
amides were readily obtainable and the barriers to rotation were readily
accessible by then-conventional NMR techniques, rotation in amides was a
favorite topic in the early days of dynamic NMR spectroscopy. As more
sophisticated techniques were developed, low barriers became measurable.
For example, other acid derivatives as well as aromatic compounds that
contain a planar group have become substrates in dynamic NMR investiga-
tions. Hindered rotation about a heteroatom to heteroatom bond also is
reviewed in this chapter, although such cases may not involve strictly a partial
double bond.

Chapter 3 deals with rotation about a formal double bond. The barrier to
rotation about a normal double bond is, of course, too high to be measured
by the dynamic NMR method. However, some groups of compounds, called
“push-pull olefins,” are amenable to study using dynamic NMR techniques.
By the electronic interaction between an electron-donating group on one end
and an electron-withdrawing group on the other, the double bond character
at the central bond is reduced considerably, rendering the barrier to rotation
sufficiently low to permit observation by this method. Enamino ketones and
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fulvenes provide typical examples in this regard. The electronic as well as
steric effects of the groups concerned are discussed in this chapter.

Chapter 4 presents a discussion of racemization-topomerization by rotation
about an sp?-sp? bond. Because each of the trigonal carbons comprises a part
of a plane that demands a large area within the plane, the two groups may not
be mutually coplanar because of their steric requirements.: Although some
such examples are included in Chapters 2 and 3, most of those discussed in
Chapter 4 are distinctly chiral or prochiral in the ground state. Therefore, in
many cases, rotation about an sp’-sp? bond corresponds to racemization.
Readers will find a variety of examples of this kind of internal rotation of
molecules in this chapter.

Chapter 5 describes restricted rotation about an sp®-sp® bond. Various
neopentylbenzenes and isopropylbenzenes are known to exhibit barriers to
rotation appropriate to applying dynamic NMR techniques. Conventional
wisdom may suggest that the presence of a bulky group will enhance the magni-
tude of the barrier to rotation but this is not always the case in this system. This
is because, unlike the sp?-sp? system, the sp?-sp? system is affected by steric
effects in the ground state as well as in the transition state. Therefore, high
barriers to rotation are seldom observed in highly congested molecules. As a
special case, barriers to rotation in 9-arylfluorenes are described, some of
which are sufficiently high to permit isolation of rotational isomers at room
temperature. As examples of correlated rotation, triarylmethanes and their
analogs and also cyclophanes are described.

Chapter 6 introduces the concept of restricted rotation about an sp3-sp?
bond. In the earlier days of dynamic NMR spectroscopy, °F was a favorite
nucleus for studying dynamics because the chemical shift differences among
!9F nuclei are usually considerably larger than those among protons. However,
it is not difficult today to observe conformations of a tert-butyl group because
the magnitude of the barrier is usually on the order of 10 kcal mol™!. Even
lower barriers than this can be measured with the use of high-field NMR
instrumentation; hence, it is now possible to study rotational barriers in
2,3-dimethylbutane and analogous compounds. 9-Alkyltriptycenes and related
compounds provide examples that display extraordinarily high barriers to
rotation because their ground states are relatively less congested and their
transition states are highly congested. The substituent effects on rotational
barriers in these compounds are discussed in some detail.

In Chapter 7, conformational changes in ring compounds are discussed.
The stereodynamics of six-membered rings are by far the favorite topic among
chemists who pursue dynamic NMR studies. However, the 'H NMR
spectrum of the most fundamental compound, cyclohexane, is too complex
to analyze! Various efforts that have been expended in order to cope with this
problem are described. If the ring size is increased, both ring inversion and
pseudorotation processes become possible sources of the dynamics observed
in these compounds. In addition, the number of possible conformations in-
creases. These difficulties are dealt with briefly in this chapter.
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Chapter 8 presents stereodynamics of amines and imines. These compounds
add further complexity because the possibility of nitrogen inversion exists in
addition to internal rotations. Mechanisms of stereomutation are contro-
versial in this respect. Readers will find some examples of this sort in this
chapter. Today, it is becoming common to use the results of empirical force-field
calculations as an aid to interpreting the NMR data and the dynamic processes
observed for amines and imines. Empirical force-field calculations are still
not highly reliable in a quantitative sense if a heteroatom is involved. There-
fore, it should be understood that the interpretations presented in this book
of the data obtained for such systems may be subject to further scrutiny and
possibly revised in the future.

Chapter 9 differs from the preceding chapters in the sense that it presents a
description of applications of the dynamic NMR technique to chemical
reactions. This method is unique because it provides information on degenerate
reactions, on acid-base interactions, and on dissociation of certain molecules
without destruction of the molecular species in nonpolar solvents. Although
such applications in the past have been used infrequently, they may become
very important in the future. That is the reason this chapter has been included,
even though the topic is not strictly stereochemical.

It will be a great pleasure for me if this small book serves to familiarize
many organic chemists with the dynamic NMR technique and inspires some
of them to develop further applications to organic chemistry. The contents of
the last chapter may deserve special mention because the dynamic NMR
technique may be capable of providing information that cannot be obtained
in any other way.

Finally I wish to express my sincere gratitude to Alan P. Marchand, the series
editor, for his painstaking language editing. Without his efforts, this book
would have not been published.
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1

GENERAL CONSIDERATIONS

Dynamic NMR Spectroscopy and Diastereotopic Nuclei

Organic chemists may sometimes encounter a 'H NMR spectrum that shows
a broad band in addition to normal sharp signals. The cause for this phenomenon
is an exchange process of nucleus sites that is taking place under the conditions
obtaining. If the temperature is raised, the broad signal sharpens to give an
ordinary sharp signal, whereas it splits into two or more signals when the
temperature is lowered.

It is well known that the life time (1) of two sites must be longer than that
shown in eq. (1-1),

J2

' T A

(1-1)

where Av is the difference in frequencies, to distinguish the two sites.! Although
spectroscopies that are familiar to organic chemists, such as infrared and
UYV-visible, treat a large difference in frequencies if there are two sites, NMR
spectroscopy treats rather a small difference. Suppose there is a chemical shift
difference of 1.00 ppm at 60 MHz for two sites. The difference in frequencies
amounts to 60 Hz. This means that in an exchanging system, eq. (1-2), we can
observe two signals corresponding to A and B if the exchange rate is much less
than 60s™1,

A

B ©(1-2)

but we may not observe two separate signals if the exchange rate far exceeds
60 s~ '. The limit where the exchange is negligibly slow is designated a slow
exchange limit, whereas when the signal attains the limit where no further
sharpening is observed, it is called a fast exchange limit.

In between the slow and the fast exchange limits, changes in lineshapes of
NMR signals are observed. These occur if the observing temperature is altered
because the rate of exchange is changed concomitantly. Analysis of the spectral
lineshapes affords rates of exchange of sites. The rates of exchange fall into a
region that is important in such molecular dynamics as internal rotation and
inversion of amines. The technique therefore has attracted the attention of many
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2 GENERAL CONSIDERATIONS

investigators who are interested in the dynamic behavior of molecules. This
field of research is now commonly called dynamic NMR spectroscopy, as
proposed by Jackman and Cotton.?

Let us examine a real exchange to enable us to understand the situation.
N,N-Dimethylformamide has two methyl groups on nitrogen (1, A and B).

H CH,
>C—N/ (A)
o “CH,

)
1

Because the environment of each of the two methyl groups is different from the
other’s, magnetic shielding of the methyl groups is different as well. Therefore,
the methyl groups give different respective signals in 'H NMR spectroscopy,
if rotation about the C—N bond is slow: the methyl groups form an un-
coupled AB system. If rotation about the C—N bond takes place, the system is
that described in eq. (1-2). Such pairs of groups of atomic nuclei are called
diastereotopic,® because if one of the groups in the pair is substituted by another
group the compound forms a pair of diastereomers. The chemically identical
groups that give different signals in NMR spectroscopy are called anisochronous.
Therefore, there is a common misunderstanding that diastereotopic nuclei must
be anisochronous; this is often, but not necessarily so. The chemical shift
difference for a pair of diastereotopic nuclei may be too small to be detected by
an available NMR spectrometer. Then, in practice, they are not anisochronous,
although they may be so in principle.

In a similar sense, the diasterotopic nature of a pair of nuclei is not a necessary
condition for being anisochronous. There are some reports that carbon atoms
constituting a rotational axis give different chemical shifts in 1*C NMR spectro-
scopy.* Because these carbon atoms also exchange their sites by internal
rotation, they also are useful for dynamic NMR spectroscopy. The diastereo-
topic nature of a pair of nuclei constitutes an overwhelming part of the dynamic
NMR study, yet it should be recognized that there are other possibilities that
can be used in the dynamic NMR technique.

NMR Time Scale

Asisclear from eq. (1-1), whether the two sites can be observed as independent
signals depends on the difference in their chemical shifts. Because the chemical
shifts are proportional to the applied magnetic field strength, the lifetime of a
nucleus in one site, a value which is needed for detecting the two or more
anisochronous nuclei, is a function of the external magnetic field. In general,
if the chemical shift difference of a pair of sites is large, the two sites can be
detected at a relatively large exchange rate. Therefore an NMR spectrometer
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operating at 400 MHz for 'H nuclei may detect two sites that are not detected
by a machine operating at 60 MHz for 'H, at a given temperature.

Temperature is another important factor to consider when discussing the
rate of exchange of two sites. If the temperature is low, molecular motion becomes
slow, and hence the exchange of sites becomes slow. In contrast, the exchange rate
becomes fast if the temperature is raised. Ordinary NMR spectrometers are
designed for operation between —100°C and +200°C. However, using a
specially designed spectrometer, temperatures of —150°C or even lower can
be reached. This means that information about exchange rates over a wide
temperature range can be obtained by the dynamic NMR technique.

At the slowest, the free energy of activation for the site exchange can be ca.
25 kcal mol ™!, This means that a site exchange with as slow as 107> s~ ! rate
constant at room temperature can be detected by the dynamic NMR technique.
On the other hand, only site exchange with ca. 5 kcal mol™?! free energy of
activation or greater can be detected at present, This corresponds to a maximum
rate constant of ca. 10° s™! at room temperature. The lowest limit of deter-
minability of this free energy of activation may be lowered still further in the
future because spectrometers with even stronger external magnetic fields may
be constructed. (The technique of lowering temperature may be applied
additionally.) It is apparent that dynamic NMR spectroscopy covers a wide
range of free energies of activation for site exchange.

The term “ NMR time scale” often is used when the lineshape of a compound’s
NMR signals is discussed. For example, methyl protons of N,N-dimethyl-
formamide give two singlet signals at room temperature because the exchange of
the two sites is slow on the NMR time scale. This means that the rate of exchange
is slower than the limit detectable by the dynamic NMR technique with available
instrumentation. However, to be precise, the NMR time scale must include
information about the strength of the external magnetic field as well as the
temperature. The situation is clear if it is recalled that the 'H NMR spectrum of
N,N-dimethylformamide shows only a singlet at-60 MHz at above 150°C,
owing to the rapid exchange of the magnetic environments of the A and B spins
under these conditions.

Coalescence

In Figure 1-1 are shown some spectra of an exchanging system, eq. (1-2), that
have been computed. As is clear from the figure, two sharp signals at a low
temperature broaden as the temperature is raised. The two signals merge into one
broad signal, and the signal becomes a sharp singlet at still higher temperatures.
When two signals merge and no observable valley between the two signals exists,
coalescence has occurred. The temperature at which two signals coalesce is
defined as the coalescence temperature, T.. However, the term “coalescence”
itself sometimes is used in a broader sense than the definition given here. In
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Figure 1-1. Computed spectra of uncoupled A and B nuclei at various rates of exchange.
Av is 60 Hz.

this broader sense, “coalescence” means the merging of two or more signals.
A term decoalescence is sometimes used. This may be taken as the phenomenon
wherein a single line in an NMR spectrum splits into two or more signals as the
temperature is lowered. Hence, decoalescence is the reciprocal of the term
coalescence in its broader sense.



