DeS|gn and Implementatlon ,

Prat

el

Library of Congress Cataloging in Publication Data

Pratt, Terrence W.

Programming languages.

Bibliography: p. 583

Includes index.

1. Programming languages (Electronic computers)
I. Title.
QA76.7.P7 1984 001.6424 83-4567
ISBN 0-13-730580-X

Editorial/production supervision by Linda Mihatov
Interior design by Anne Bonanno and Linda Mihatov
Cover design by Anne Bonanno

Manufacturing buyer: Gordon Osbourne

©1984, 1975 by PRENTICE-HALL, INC.,
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4

ISBN 0-13-730580-X

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

For Kirsten, Randy, and Laurie

Computer programming language design and the interplay between lan-
guage design and implementation are the two central concerns of this book.
The design and implementation of programming languages, during the
almost thirty-year span from the first version of FORTRAN in the mid-
1950s to the design of Ada' in the early 1980s, have been more art than
science. The underlying principles have always been vague at best, and the
accumulation of accepted design alternatives has been far slower than one
might expect considering the hundreds of programming languages that
have come into existence during the period. The central goal of this book is to
bring together the various facets of language design and implementation
within a single conceptual framework. The most difficult problem has been
to find a framework with both the breadth to encompass the concepts in a
wide variety of languages and the depth to allow the relationships among
variants of the same concept in different languages to be clearly seen. The
result of this endeavor is found in Part I of this book, in which many of the
central concepts in programming languages are identified and discussed,
along with their implementations on conventional computers. In Part 11,
eight of the most widely used programming languages are described
individually in terms of the concepts developed in Part I. The book is
intended as a text for an undergraduate or beginning graduate survey

1 Ada is a registered trademark of the U.S. Dept. of Defense.

xiii

xiv

Preface

course on programming languages and as a useful reference to concepts,
terminology, and languages for practicing programmers.

Partlis organized in the following manner: Chapter 1 develops some of
the motivation for the study of programming languages and provides a brief
history. Chapter 2 outlines the basic approaches to language implementa-
tion. Chapters 3 through 8 form the core of the book, developing the key
concepts in the areas of data objects, data types, abstraction mechanisms,
control structures, and storage management. Syntax, which often makes up
a major part of discussions about programming languages, plays a lesser
role here. Chapters 3 through 8 are concerned primarily with semantic
structures and run-time representations in languages. Syntax enters only
occasionally as a topic of interest, although many examples of various
syntactic structures are found in these chapters. Chapter 9 considers
directly the topic of syntax and its effect on language structure and
translator design. Chapters 10 and 11 round out the conceptual under-
pinnings through brief discussions of language environments and theoret-
ical models.

Topic selection has been a major problem throughout Part I. What are
the central concepts in programming languages? Those selected here have
seemed most central, but inevitably some topics have been slighted, and
some have been omitted altogether. Doubtless few readers will find the
selection entirely to their liking. In an area where there is so little agreement
on general principles this cannot be helped. Nevertheless perhaps the
overall breadth and balance of the treatment may serve to outweigh
somewhat its deficiencies in particular topic areas.

The choice of languages toinclude in Part IT has also been difficult. Two
major criteria have guided the selection: widespread use and diversity of
concept. On the one hand, inclusion of the most widely used languages has
seemed a necessity if the book is to have value as a text and reference. On
this basis I have been guided toward the older, more well-established
languages: FORTRAN, COBOL, PL/I and Pascal. On the other hand,
variety of language design concept is also to be desired if the languages are
to exemplify as many of the concepts of Part I as possible. On this basis I
have included the list processing language LISP, the string processing
language SNOBOL4, and the array processing language APL. Ada is
included for its variety of concept, because it promises to be in widespread
use within a few years, and because in major aspects it represents the
distillation of many language design concepts developed through experi-
ence with dozens of other language designs, beginning with ALGOL 60.

Many other languages besides these eight were considered for inclu-
sion, but ultimately restrictions of space and time narrowed the choice. The
particular choice of languages should not be too significant, for the intentin
Part I is to build a framework for the analysis of languages that may be

Preface

XV

applied by the reader to any language. Part II only illustrates how this
analysis might be done in eight specific cases.

As a Text

This book is intended as an upper-division undergraduate text for a one-
semester course in programming languages (such as the course CS & in the
ACM Curriculum *78). It is suitable as a beginning graduate text with some
supplementary material from the literature. Since it presumes only an
elementary background—knowledge of atleast one high-level language and
a basic knowledge of machine organization and assembly language pro-
gramming—it could also be used as a lower-division undergraduate text by
suitable choice of topics.

A survey course on programming languages is difficult to teach
because of the multiplicity of language and implementation concepts that
might be treated. There are dozens of languages in fairly wide use, each with
its own set of concepts and implementation techniques. How is one to survey
this diversity without the result being simply a hodgepodge of unrelated
detail? The answer provided by this book is found in the conceptual
framework of Part I. The study of a languageis organized around the central
areas of data objects and data types, abstraction mechanisms, sequence
control and data control, storage management, syntax, and operating and
programming environments. Part IT provides example analyses of eight of
the most widely used programming languages, using the concepts devel-
oped in Part I. Each chapter provides references for further reading and
problems involving, for the most part, application of the concepts to new
situations.

There are two different approaches that might be used in a course
organized around this material. The simplest approach is to take PartI more
or less sequentially, with the instructor providing examples from particular
languages to illustrate the material more fully as appropriate. have found
this approach successful with more mature students in a beginning
graduate course. At this level the text was supplemented with readings in
the literature, and class discussion concentrated on the more complex
concepts in the text. The course involved only a few programming problems;
the primary emphasis lay with design questions.

The alternative approach, which I have used at the advanced under-
graduate level with students having only two or three previous computer
science courses, is to work back from the languages to the concepts. The
instructor chooses two to four of the languages in PartII,including one that
the entering students have already used. The text is supplemented by the
usual manuals for these languages, and the students write elementary
programs in each language as the course progresses. The appropriate

Xvi

Preface

chapters in Part IT, beginning with the chapter on the known language, are
taken up after an initial quick pass through PartI. As the concepts in each of
the chosen languages are developed and contrasted, the relevant sections of
Part I are brought in to provide the necessary depth to support the
discussion. By staying close to particular languages, which the studentis at
the same time applying in practical programming exercises, proper motiva-
tion is provided for the study of the general concepts of Part I. The choice of
exactly which languages to study in depth is dependent on three factors:
the background of the students entering, the languages available on the
computer at hand, and the interests of the instructor. For the greatest
breadth of concept, at least one of the first five languages in Part II
(FORTRAN, COBOL, PL/I, Pascal, Ada) and one of the last three (LISP,
SNOBOL4, APL) make an effective combination. It has been my experience
that for the undergraduate student a detailed study of a language loses its
interest and effectiveness unless coupled with the opportunity to write and
run programsinthelanguage at the same time. The organization of the text
should allow considerable flexibility in the choice of languages to meet local
situations. At the end of the course, if time permits, a particularly useful
larger project is to have the student learn and analyze a locally available
language that is not described in Part II.

Changes from the First Edition

Our understandings about programming languages have changedin major
ways between 1973, when the first edition was being written, and today. As
aresult, this edition represents almost a complete rewriting of the original
text. The central core of the book, Chapters 3 through 8, has been extensively
modified. The major changes begin with a new emphasis on the data-
object/data-type distinction, and the view of a data type as a set of data
objects and the operations on those objects. A more integrated treatment of
data types and type checking is used in Chapters 3 and 4 (in contrast to the
separate treatment of data and operations in the first edition).

Chapter 5, which is entirely new, brings together a number of concepts
treated briefly or not at all in the first edition. The importance of abstraction
as a central concept in the construction of programs is emphasized, and the
concepts of procedural and data abstraction are introduced. Subprograms
are treated for the first time here in their role as abstraction mechanisms.
Theissues of sequence and data control related to subprograms are taken up
in the subsequent chapters.

The discussion of sequence control at the statement level and at the
subprogram level (Chapter 6) has been extensively modified and extended.
An extended discussion of concurrency is now included, based on the Ada
rather than the PL/I approach to tasks and concurrent programming.

Preface

xvii

Data control structures (scope rules and parameter transmission) are
central issues in programming languages. Chapter 7 now deals with these
issuesin what T hope is a more satisfactory fashion. The distinction between
static and dynamic scopeis clearly drawn, aliasing is treated, and the entire
discussion is reorganized to reflect a better understanding of the issues on
my part. In the section on parameter transmission, call by name trans-
mission and transmission of label parameters (important topics in ALGOL
60), have been deemphasized.

Other additions include a section on programming environments to
complement that on operating environments in Chapter 10 and a brief
history of the field in Chapter 1. Deletions have come in two major areas:
variable-size data structures (stacks, queues, linked lists) and heap storage
management. Several reviewers of the first edition noted that these topics
ordinarily are treated in other courses and thus these sections are usually
skipped.

Theoretical models (Chapter 11) is a new topic, treated far too
superficially. It includes the discussion of universal languages and Turing
machines from the first edition, but touches on several additional areas
where theory has influenced practice in obvious ways (e.g., compiler
construction, program verification, formal semantic definition). It would be
more satisfying in many ways to use formal theoretical models throughout
the book in a much stronger way, but this is not yet possible. There is no
single theoretical framework that encompasses the breadth and depth of
topics that need to be treated, and introduction of several different formal
structures to treat different topics would obscure rather than clarify.
Chapter 11 is intended to provide only motivation for further study of
theoretical models and some pointers to the literature.

Finally, the most obvious change: Pascal and Ada have replaced
ALGOL 60 in Part II, and Pascal and Ada are the primary sources of
examples now in Part 1. This change reflects the obvious shift of concernsin
language design and implementation during the 1970s.

A Note on Terminology

Many technical terms related to programming languages and language
implementations lack a generally accepted definition. Often the same term
has been used by different writers to name different concepts, e.g., the term
interpreter,or alternatively, the same concept has been denoted by a variety
of different terms, e.g., the data structure termed a stack here, which is also
known as a pushdown list and LIFO (last-in-first-out) list. have tried to
choose the terminology that seems most generally accepted, e.g., stack. In
cases where there seems to be little agreement on a standard definition,
however, a precise definition is adopted for the purposes of this book (see, for

xviii

Preface

example, the definition of interpreter in Chapter 2), maintaining what seems
to be the major denotation of the term insofar as possible. The reader should
exercise due caution, however, in the case of terms that are already familiar
from other contexts.

A more difficult problem concerns concepts for which there is no
generally accepted terminology. In these few cases an appropriate termi-
nology has been introduced in the text. The two most prominent examples
are the term data control structure (Chapter 7) for those aspects of a
language concerned with the visibility and accessibility of data at different
points in a program, and the distinction between the operations of refer-
encing (Chapter 7) and selection (or accessing, Chapter 4) on data objects. In
choosing these terms, I have tried to avoid conflict with other occasional
uses of the same terms, but perhaps without complete success. Again the
reader is cautioned.

Terrence W. Pratt
Charlottesville, Virginia

This book is based largely on experience teaching programming language
concepts at the University of Virginia, and before that at the University of
Texas at Austin. A number of people have contributed through their
thoughtful reviews of the manuscript or of individual chapters: John Knight,
Paul Reynolds, John Gannon, Mary Dee Fosberg, Bob Collins, and Stefan
Feyock for the second edition, and Jeffrey Ullman, Ralph Griswold, Saul
Rosen, and Dan Friedman for the first. Felix Saltor and Jaume Argila
provided an extended review of the first edition, which was extremely
helpful. Numerous other users of the first edition also contributed sugges-
tions over the years.

My wife, Barbara Kraft, handled the entry of most of the revised text on
our word processor and aided in many other ways in the preparation of the
manuscript. The University of Virginia provided financial support, and the
Institute for Computer Applicationsin Science and Engineering (ICASE) at
the NASA Langley Research Center provided a congenial working envi-
ronment for much of the writing. Ruthie Pratt, Ann Patterson, and the
University of Texas at Austin contributed to the preparation of the
manuscript of the first edition. To these people and institutions, my thanks.

xix

8865908

X1

PREFACE

__PART 1
CONCEPTS

CHAPTER 1
The Study

of Programm
Languages

ing

? 3

y programming languages

Why stud

1-1

6

What makes a good language?

A brief history

2
i-8
1-4

1-
-

7

3

1

ing

ions for further read

References and suggest

3

Problems 1

5

vi

Contents

CHAPTER 2
Programming
Language
Processors 14
2-1 The structure and operation of a computer 14
2-2 Hardware and firmware computers 19
2-3 Translators and software-simulated computers 20
2-4 Syntax, semantics, and virtual computers 25
2-5 Hierarchies of computers 28
2-6 Binding and binding time 30
2-7 References and suggestions for further reading 35
2-8 Problems 36
CHAPTER 3
Elementary
Data
Types 38
3-1 Data objects, variables, and constants 38
3-2 Data types 43
3-3 Specification of elementary data types 44
3-4 Implementation of elementary data types 48
3-5 Declarations 50
3-6 Type checking and type conversion 53
3-7 Assignment and initialization 57
3-8 Numeric data types 60
3-9 Enumerations 66
3-10 Booleans 68
3-11 Characters 69
3-12 References and suggestions for further reading 70
3-13 Problems 70
CHAPTER 4
Structured
Data
Types 73
4-1 Structured data objects and data types 73
4-2 Specification of data structure types 74

Contents

vii

4-3 Implementation of data structure types 76
4-4 Declarations and type checking for data structures 81
4-5 Vectors and arrays 83
4-6 Records 89
4-7 Character strings 98
4-8 Variable-size data structures 102
4-9 Pointers and programmer-constructed data objects 104
4-10 Sets 108
4-11 Files and input-output 111
4-12 References and suggestions for further reading 118
4-13 Problems 118
CHAPTER §
Subprograms
and Programmer-Defined
Data Types 124
5-1 Evolution of the data type concept 125
5-2 Abstraction, encapsulation, and information hiding 126
5-3 Subprograms 128
5-4 Type definitions 137
5-5 Abstract data types 142
5-6 References and suggestions for further reading 147
5-7 Problems 147
CHAPTER 6
Sequence
Control 149
6-1 Implicit and explicit sequence control 149
6-2 Sequence control within expressions 150
6-3 Sequence control between statements 162
6-4 Subprogram sequence control: Simple CALL-RETURN 175
6-5 Recursive subprograms 183
6-6 Exceptions and exception handlers 185
6-7 Coroutines 191
6-8 Scheduled subprograms 194
6-9 Tasks and concurrent execution 196
6-10 Data structures and sequence control 206
6-11 References and suggestions for further reading 209
6-12 Problems 210

R I e TP TR

viii

Contents
CHAPTER 7 .
Data
Control 215
7-1 Names and referencing environments 216
7-2 Static and dynamic scope 222
7-3 Block structure 225
7-4 Local data and local referencing environments 227
7-5 Shared data: Explicit common environments 234
7-6 Shared data:,.Dynamic scope 238
7-7 Shared data: Static scope and block structure 241
7-8 Shared data: Parameters and parameter transmission 251
7-9 Tasks and shared data 272
7-10 References and suggestions for further reading 275
7-11 Problems 276
CHAPTER 8
Storage
Management 280
8-1 Major run-time elements requiring storage 281
8-2 Programmer- and system-controlled storage management 283
8-3 Storage management phases 284
8-4 Static storage management 285
8-5 Stack-based storage management 285
8-6 Heap storage management: Fixed-size elements 290
8-7 Heap storage management: Variable-size elements 297
8-8 References and suggestions for further reading 300
8-9 Problems 301
CHAPTER 9
Syntax
and
Translation 303
9-1 General syntactic criteria 304
9-2 Syntactic elements of a language 309
9-3 Stages in translation 314
9-4 Formal definition of syntax 321
9-5 References and suggestions for further reading 327
9-6 Problems 328

Contents

CHAPTER 10

ix

Operating

and Programming

Environments 330
10-1 Batch-processing environments 330
10-2 Interactive environments 332
10-3 Embedded system environments 333
10-4 Programming environments 334
10-5 References and suggestions for further reading 338
CHAPTER 11
Theoretical
Models 339
11-1 Problems in syntax and translation 340
11-2 Problems in semantics 345
11-3 Conclusion 353
11-4 References and suggestions for further reading 353
CHAPTER 12
FORTRAN 77 357
12-1 Brief overview of the language 358
12-2 An annotated example: Summation of a vector 359
12-3 Data types 361
12-4 Subprograms 368
12-5 Sequence control 369
12-6 Data control 372
12-7 Operating and programming environment 374
12-8 Syntax and translation 374
12-9 Structure of a FORTRAN virtual computer 375
12-10 References and suggestions for further reading 377
12-11 Problems 377

Contents

CHAPTER 13
COBOL 378
13-1 Brief overview of the language 379
13-2 An annotated example: Summing a list of prices 381
13-3 Data types 386
13-4 Subprograms 394
13-5 Sequence control 394
13-6 Data control 397
13-7 Operating and programming environment 398
13-8 Syntax and translation 398
13-9 Structure of a COBOL virtual computer 400
13-10 References and suggestions for further reading 400
13-11 Problems 400
CHAPTER 14
PL/I 402
14-1 Brief overview of the language 403
14-2 An annotated example: Summation of a vector 405
14-3 Data types 407
14-4 Subprograms and programmer-defined data types 414
14-5 Sequence control 415
14-6 Data control 418
14-7 Operating and programming environment 421
14-8 Syntax and translation 421
14-9 Structure of a PL/| virtual computer 423
14-10 References and suggestions for further reading 424
14-11 Problems 425
CHAPTER 15
Pascal 426
15-1 Brief overview of the language 427
15-2 An annotated example: Summation of a vector 428
15-3 Data types 431
15-4 Subprograms and type definitions 440
15-5 Sequence control 442
15-6 Data control 446
15-7 Operating and programming environment 448
15-8 Syntax and translation 449
15-9 Structure of a Pascal virtual computer 452

