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Preface

In polymer crystallization the challenge is to identify and clarify the trans-
formations by which chain molecules pass from a disordered, molten state to
the ordered supra-molecular organization known as the semi-crystalline state.
The subject is highly relevant in terms of both basic science and technology;
it is indeed clear that many modern applications require complete control of
the structure and the morphology of polymers from macroscopic dimensions
down to below the nanoscale. As a simple example, making the crystallites in
a polymer fiber equally oriented and reducing the number of chain folds (or
hairpins) therein, usually turn out to be very favorable requisites for mechan-
ical performance.

Is the onset of polymer crystallization, at least in some instances, preceded
or accompanied by partial ordering of the system, possibly with influence on
the kinetics and the equilibrium at both the molecular and the supra-molecular
level? We may look at this issue, addressed in the present collection of con-
tributions to Advances in Polymer Science, from very different sides. Modern
microscopic techniques enable us to explore localized morphological aspects
down to the observation of individual molecules, whereas X-ray, neutron and
electron scattering provide molecular structure information down to the atom-
istic level. Experimental techniques allow us to explore kinetic aspects and are
paralleled nowadays by fast-expanding molecular simulation approaches, in-
creasingly able to give clues to the many open problems relating to structure
development and morphology. Besides, the statistical-mechanical viewpoint
may help to make sense out of the many experimental results and related
simulations.

While in volumes 180 and 181 of this series several basic aspects of mor-
phology, inter-phase structure and disorder were addressed, in the present
volume, molecular interactions, modeling, phase transformation and crystal-
lization kinetics are considered (see the subject index including keywords from
volumes 180 and 181 at the end of the book). Needless to say, in spite of sub-
stantial success over 60 years or more we are still far from having a complete
and unambiguous picture of polymer crystallization. We firmly believe that
a fruitful approach to such a complex problem requires one to give way to
many different and sometimes conflicting viewpoints, as we have attempted to
do in these volumes. We do hope that they are not only a time-capsule left for
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future scientists, but that they also contain the seeds of a coherent view that

will eventually develop.
I would like to renew my gratitude to Valdo Meille for his very creative,

intelligent and active co-operation.

Milan, October 2005 Giuseppe Allegra
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Abstract In this review, we consider a variety of aspects of polymer crystallization using
a very simple lattice model. This model has three ingredients that give it the neces-
sary flexibility to account for many features of polymer crystallization that have been
observed experimentally. These ingredients are (1) a difference in attraction between
neighboring (nonbonded) components, (2) attraction between parallel bonds, and (3)
temperature-dependent flexibility due to the energy cost associated with kinks in the
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polymer chain. We consider this model using both dynamic Monte Carlo simulations and
a simple mean-field theory. In particular, we focus on the interplay of polymer crystalliza-
tion and liquid-liquid demixing in polymer solutions. In addition, we study the factors
that are responsible for the characteristic crystal morphologies observed in a variety of
homopolymer and statistical-copolymer crystals. Finally, we consider how the freezing of
polymers in the bulk can be related to the crystallization of a single polymer chain.

Keywords Crystallization - Lattice statistics - Melting - Monte Carlo simulations -
Phase diagram

1
Introduction

The building blocks of liquid-crystalline polymers are anisometric, and
many of them form liquid-crystalline mesophases, even in monomeric form.
Monomers that have this property are called mesogens. The molecular driv-
ing force to form a nematic phase can be due to anisotropic steric repulsions
between the anisometric hard cores of the mesogens. This mechanism was pro-
posed by Onsager [1]. It provides a successful description of many lyotropic
disorder-order phase transitions. Alternatively, nematic ordering can be in-
duced by the anisotropy of the polarizability of the mesogens, making the
parallel orientation of mesogens energetically favorable. This mechanism for
theisotropic-nematic transition was proposed by Maier and Saupe [2, 3]. It pro-
vides a useful description of thermotropic disorder-order phase transitions.
In many cases of practical interest, both interactions play a role and should be
taken into account in a description of the isotropic-nematic transition [4-11].

The building blocks of nonmesogenic polymers are also nonspherical; how-
ever, their degree of nonsphericity may be insufficient to induce nematic
ordering. As already pointed out by Flory [12], the rigidity of a polymer chain
- and thereby the anisometry of the Kuhn segments—tends to increase with
decreasing temperature. Flory argued (on basis of the Onsager model) that, at
sufficiently low temperatures, the anisometry of the Kuhn segments becomes
so large that the isotropic (disordered) state is no longer stable and sponta-
neous ordering—in this case crystallization—must occur [12]. Note that this
freezing mechanism is rather different from the one considered in simple li-
quids: there itis assumed that freezing occurs simply because the molecules can
pack more densely in the solid state than in the liquid. The density change on
freezing of simple liquids is typically much less than that observed in the orien-
tational ordering of hard rods. Moreover, most lattice models cannot be used
to describe a freezing transition driven by packing alone. However, this does
not imply that a lattice model cannot properly describe polymer crystallization
other than as an isotropic-nematic transition driven by anisotropic excluded-
volume effects. In fact, it is possible to describe polymer freezing by taking
into account the enhanced attraction between bonds with parallel orientation.
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A lattice model that takes such attractions between parallel bonds into account
provides a reasonable prediction of polymer melting points [13] and of their
interplay with liquid-liquid demixing in polymer solutions [14]. The same fac-
tors that favor freezing do affect to a greater or lesser extent the formation
of mesophases; hence, there is a close relation between polymer crystalliza-
tion and the formation of mesophases, which are frequently observed before
polymer crystallization (see other papers in this issue).

In this review, we focus on the effect of anisotropic interactions, in particu-
lar parallel attractions, and demonstrate that the inclusion of such interac-
tions in a model leads to a great richness in possible polymer phase behavior.
From a practical point of view, the model that we describe has the advantage
that it is computationally very cheap—although this advantage comes at the
price of sacrificing the greater realism of an off-lattice model.

In what follows, we use simple mean-field theories to predict polymer
phase diagrams and then use numerical simulations to study the kinetics of
polymer crystallization behaviors and the morphologies of the resulting poly-
mer crystals. More specifically, in the molecular driving forces for the crys-
tallization of statistical copolymers, the distinction of comonomer sequences
from monomer sequences can be represented by the absence (presence) of
parallel attractions. We also devote considerable attention to the study of the
free-energy landscape of single-chain homopolymer crystallites. For readers
interested in the computational techniques that we used, we provide a de-
tailed description in the “Appendix.”

2
Lattice Model for Polymer Crystallization

2.1
Flory’s Treatment for Semiflexible Polymers

The structure of a simple mixture is dominated by the repulsive forces be-
tween the molecules [15]. Any model of a liquid mixture and, a fortiori of
a polymer solution, should therefore take proper account of the configu-
rational entropy of the mixture [16-18]. In the standard lattice model of
a polymer solution, it is assumed that polymers “live” on a regular lattice of n
sites with coordination number q. If there are n, polymer chains, each occu-
pying r consecutive sites, then the remaining n; single sites are occupied by
the solvent. The total volume of the incompressible solution is n = n; + rn,.
In the case r = 1, the combinatorial contribution of two kinds of molecules to
the partition function is

n! n\™" [/ n\™
Zcomb = o ~ (_) <_> . (1)
ORI n np



4 W. Hu - D. Frenkel

This expression accounts for the configurational entropy of an ideal binary
mixture with identical molecular sizes, but not for that of a polymer solution,
since polymer chains are large and flexible. For that case, more contributions
arise from the chain conformational entropy, first considered by Meyer [19]
and then derived by Huggins [20] and Flory [21]. In analogy with a nonre-
versing random walk on a lattice, the conformational contribution of polymer
chains to the partition function is given by

(_(zl)nz zér—Z)nz

ar-Dmy? (2
where the first factor 1/2 is the symmetry factor of chain ends. This factor
accounts for the fact that the calculation can start from either of two chain
ends. In Eq. 2, g is the number of possible ways to put the second chain unit
along the chain, z. (= q - 1) is the number of possible ways to place each
subsequent chain unit of the rest, and a is a correction term for each step
of random walk due to the presence of other chains. Flory showed that if
one assumes random mixing (i.e., ignores all local structural correlations),
a = e. Huggins used a somewhat more sophisticated procedure to estimate the
probability of finding two consecutive vacant sites and obtained the estimate
a=(1-2/q)"4?" [22]. To account for semiflexibility, Flory introduced a po-
tential energy penalty E. for every “kink” in the lattice polymer. The presence
of this kink energy changes z, the intramolecular part of the partition func-
tion, to z. =1 + (q - 2) exp[- E./(ks T)], where kg is Boltzmann’s constant and
T the temperature [12]. For the fully disordered state at very high tempera-
tures, the so-called “disorder parameter” d, defined as the mean fraction of
consecutive bonds that are not collinear, should be

e ()
B 1+(q-2)exp (— kEB_CT)

As the temperature is decreased, the chains become increasingly rigid: z.
then approaches 1 if we assume that there is only one fully ordered crys-
talline structure and Z_,¢ for the liquid becomes smaller than 1. This means
that, at this level of approximation, the disordered state becomes less fa-
vorable than the crystalline ground state. A first-order disorder-order phase
transition is expected to occur under these conditions. Flory interpreted this
phase transition as the spontaneous crystallization of bulk semiflexible poly-
mers [12]. However, since the intermolecular anisotropic repulsion essential
in the Onsager model is not considered in the calculation, only the short-
range intramolecular interaction is responsible for this phase transition.

The calculation of Z ., makes use of the random mixing approximation
for the fully disordered state. Several authors [23-27] have reported improved
estimates of Z.,ns that take into account the effect of local ordering at low
temperatures; however, the resulting improvement in the prediction of the

Zconf =

(3)
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melting point is not very large [22]. Another approach in the calculation of
configurational entropy of semiflexible lattice chains was suggested by Di-
Marzio [28] and was expanded by Ronca [29], and this has been found useful
in the study of orientational relaxation of stretched polymer liquids [30-32].

A number of Monte Carlo simulations have verified the spontaneous
disorder-order phase transition of semiflexible polymers in 3D lattice
models [33-36]. In molecular dynamics simulations, even the metastable
chain-folding in the supercooled melt has been observed [37]. However,
the ordering transition studied in these simulations was the one from the
isotropic to the nematic phase, rather than the actual crystallization tran-
sition [38]. At high densities, cooling results in the formation of a glassy
disordered state rather than a crystal [39].

2.2
Implications of Parallel Attractions in Polymer Systems

In Monte Carlo simulations, it has been found that introducing a parallel
attraction between the polymer bonds, in addition to the bending-energy
penalty, could significantly enhance the first-order nature of the isotropic-
nematic phase transition at high concentrations [40, 41]. In fact, the inclusion
of attraction between parallel bonds has been found to be useful in many stud-
ies of nonmesogenic polymers. Such attractions between parallel bonds can
mimic the short-ranged orientational order in polyethylene melts that was
observed in molecular dynamics simulations [42], in agreement with experi-
mental observations on n-alkane liquids [43]. The anisotropic interactions have
been considered in the study of orientational relaxation of stretched polymer
melts [30-32] and of local order in polymer networks [44, 45].

An early study on the role of parallel attraction in polymer crystallization
was made by Bleha [46], who considered the enthalpic effect of parallel pack-
ing on the melting point of polymers. In addition, Mansfield [47] took parallel
interactions into account in his Monte Carlo calculation of the chain-folding
probability at the interphase zone between lamellar crystals and amorphous
liquid. Monte Carlo simulations by Yoon [48] showed that parallel attrac-
tion can lead to the formation of ordered domains and a density-functional
theory study of melt crystallization by McCoy et al. [49] revealed the exis-
tence of an effective “chain straightening force” originating from attractive
potentials [50]. In Monte Carlo simulations of AB-copolymer crystalliza-
tion, parallel attractions were used to distinguish the crystallizable sequences
from the noncrystallizable sequences [50-52]. Parallel attractions were also
applied in the Monte Carlo study of polymer crystallization from dilute so-
lutions on 2D [53] and 3D lattices [54], as well as from the homopolymer
melt in 2D [55] and 3D [56] lattices. In earlier work, we showed that the
incorporation of attraction between adjacent, unconnected bonds allows us
to reproduce the sectorization of chain-folding in a single lamellar crystal-
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lite [57] and the shish-kebab morphology of polymer crystallites induced by
a single pre-aligned chain [58]. More details of some simulation results are

discussed in Sects. 3 and 4.

2.3
Mean-Field Treatment of Parallel Attractions

We now consider a lattice model for a polymer solution that has both
isotropic and anisotropic interactions. A mean-field expression for the free
energy of the system can be obtained by approximating the local concentra-
tion of polymer chain units by its average value. We consider a solution of
polymers consisting of r units on a cubic lattice. The volume fraction occu-
pied by the polymers is denoted by ¢. Two energetic interaction parameters
play a role. One is the “mixing energy” B. It is a measure for the energetic cost
(relative to the unmixed situation) for having a solvent particle and a polymer
chain unit on adjacent lattice sites: B = Eys — (Ess + Equ)/2, where E,, repre-
sents pair interactions of the chain units (u) and the solvent particle (s). The
second interaction energy E, denotes the energy cost to break up a pair of
adjacent, parallel polymer bonds. The mixing interactions act between sites
and are isotropic, while the parallel attractions act between bonds and are
anisotropic.

In the fully disordered state, the probability to find a bond at a given
bond site is simply given by the ratio of the total number of bonds [n,(r -
1)] to the total number of bond positions (ng/2). The probability that
a given bond has a specific parallel neighbor is therefore given by 2n,(r -
1)/(nq). Every bond has g - 2 neighbors, since two consecutive neighbors
along the chain should be subtracted from the coordination number. Un-
less a neighboring site is occupied by a parallel bond, its energy cost equals
Ep. The average potential energy cost due to nonparallel packing is there-
fore In(zp) =- 1/2(q - 2)[1 - 2ny(r - 1)/(nq)]Ep/(k T), where the factor 1/2
eliminates double counting of pair interactions. At the mean-field level, the
potential energy due to nonparallel packing reduces the partition function by
a factor of zp’ -1, Similarly, most chain units can have g - 2 neighbors oc-
cupied by solvent. The probability of finding a solvent molecule on a specific
neighboring site is 71 /n. It then follows that the total mixing potential energy
per chain unit is In(zy) = - (g - 2)nB/(nkg T). The corresponding contribu-
tion to the partition function is zy;'.

Combining all contributions to the partition function of the disordered
state of a lattice polymer solution, we obtain

Z =ZcombZconf ZEZ(r_I)anz ’ (4)

n n
(M (™ 2(ﬂ)"zznz(r-z)e-nz(r—nznz(r—nznzr
ny np 2 ¢ P m >
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=0 _ E
where z. =1+ (q - 2)exp(— ki—‘T), zp = expl— = [1 - %] kB—PT] , and

2
Zm = exp [— 9 n)n' kBLT] .

The mean-field expression for the free-energy density of the polymer solu-
tion is therefore [13, 14]
¢

qr
f(¢)=(1—¢)ln(1—¢)+7ln¢_¢1n(7) )

2 1 g-2 1
_¢[-(1—;)lnzc+1—;+(q-2)B+—2—(1-;>EP:|
2 q-2( 1Y
-4 [(q—Z)B+ p (1 r) EP].

In the perfectly ordered crystalline ground state, all polymer bonds are par-
allel and no solvent-polymer contacts are present. If we ignore disorder (va-
cancies, kinks) in the polymer crystal at finite temperatures, the free-energy
density of the crystalline state is zero.

24
Predictions of the Polymer Melting Point

Inspection of the mean-field free-energy density given in the previous para-
graph allows us to see the relationship between the (microscopic) molecular
parameters of the lattice-polymer model and its (macroscopic) phase dia-
gram. Let us first focus on the equilibrium melting point, i.e., the temperature
at which the crystalline phase and the isotropic liquid phase are in thermo-
dynamic equilibrium. We first consider the effect of the energy parameters in
the model and of the polymer chain length on the melting point of bulk ho-
mopolymers. Polymer solutions and mixtures will be discussed in the next
section.

At coexistence, the chemical potentials of given species must be equal. In
a plot of f(¢) versus the polymer concentration ¢, this equality leads to the
familiar common-tangent condition: at coexistence, the tangents to the free-
energy densities of the solid and liquid phases must coincide. In the lattice
model that we use, the partition function for the fully ordered ground state
is given by Z = 1 and hence its free-energy density is zero. At finite tempera-
tures, the presence of defects will change the free-energy density of the solid.
We ignore this effect. In addition, the lattice model ignores the effect of the
vibrational degrees of freedom of the polymers.

In a pure homopolymer system, the free-energy density only depends on
E (the quantity that determines the chain rigidity) and E;, (the quantity that
determines the tendency of backbone chains to form parallel, close-packed
structures). Let us first consider the relative stability of the pure polymer melt
and the polymer solid in the limit of infinitely long chains. In that case, we
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find that the free energies of the liquid and solid are equal when

E. ( —2)2 E
1+(q—2)exp<-— —BT—) =exp[l + qTEB_;;] . (6)

If E. < kg T at melting, we can ignore the first term on the left-hand side and
we obtain

E.+ @2 ;;’ZEP
Tp=—b |
™ kg[ln(g -2) - 1]

Equation 7 shows that both an increase in chain rigidity and an increase in
the interaction between parallel chains will lead to an increase in the melt-
ing point, in agreement with experiments [59-62]. For example, semirigid
chains that contain aromatic groups in the chain backbone usually have high
melting points. Similarly, aliphatic polyamides that have strong interchain
interactions, due to hydrogen bonding, tend to have higher melting points
than aliphatic polyesters. In addition, strong interchain interactions are only
possible in the absence of steric obstructions. For example, polypropylene
has smaller side branches than poly(1-butene) and, a fortiori, than poly(1-
pentene). And indeed, polypropylene has a higher melting point (460.7 K)
compared with poly(1-butene) (411.2 K) and poly(1-pentene) (403.2 K) [63].
Bunn [64] has observed a linear dependence of T, on the cohesive energy
density of the same series of homologues [64]. This observation is under-
standable because both E. and E, contribute to the cohesive energy density
of solid polymers in a linear way, and in addition the compounds in the same
homologous series should have similar Ec and E;, values.

(7)

10

T, [Efkg

OIAO Ol.5 1I.0 1.5 2‘.0
E/E

Fig.1 Melting temperatures of polymers (kpTm/Ec) with variable Ep/E. values. The line
is calculated from Eq. 10 and the circles are the simulation results obtained from the onset
of crystallization on the cooling curves of disorder parameters, in a short-chain (r = 32)
system (occupation density is 0.9375 in a 32-sized cubic box) with a template substrate
(Hu and Frenkel, unpublished results)



