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Introduction

1.1 Signals and Signal Processing

Wavelet analysis had its origins in the mid-eighties. From the very begin-
ning it was driven by application needs: The desire to analyze seismic signals
more sensitively than with Fourier techniques led to the first appearance of
the contimious wavelet transform formula. In parallel it turned out that the
new technique could be applied successfully to certain problems in theoretical
physics as well as in pure mathematics. For one of the earliest collections of
research and survey papers documenting the state of the art the reader is
referred to [6].

It soon turned out that wavelet analysis successfully could be applied to
many types of signal processing problems: In signal analysis the detection
of discontinuities or irregularities was tackled with wavelets. The analysis of
medical signals like electrocardiograms of the heart is one of the first reported
examples of discontinuity detection (see [6]). For more applications, like the
analysis of sensor signals in robotics, cf. sect. 2.3.1.

Signal compression is another impressive example of wavelet applications.
JPEG 2000, the present version of the international standard on still image
compression is based on wavelet techniques (see, e.g., [36]).

Wavelet applications both in signal analysis and signal compression shall
be described in more detail in later sections. This chapter serves as a brief in-
troduction to the main features of the wavelet transform by comparing wavelet
transform with Fourier transform, the standard tool of signal analysis. For that
purpose we shall work out the common aspects of wavelet and Fourier trans-
forms and point out the main differences. For understanding the following
section, the knowledge of the Fourier transform is not a necessary prerequi-
site. On the other hand, of course, it would be useful, if the reader already
had some experience with applications of the Fourier transform. Basic facts
about the Fourier transform are collected in the appendix, sections 5.2 and
5.3.
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Mathematical symbols, used throughout this book, are explained upon
their first appearance. They are collected in sect. 5.1 of the appendix.

1.2 Local Analysis

In this section we will deal with signals which may be represented by a function
f(t) depending on time t. We shall assume that t is a continuously varying
parameter; thus f(t) is called a “continuous-time signal”.

We shall try to transform f(t) into a representation, which encorporates
the desired information about the signal as compactly as possible. The Fourier
transform (cf. sections 1.2.2 and 1.2.3) supplies information about the con-
tribution of certain frequencies to the signal, the wavelet transform (cf. sect.
1.2.4) indicates whether details of a certain size are present in a signal and
quantifies their respective contribution. Both transforms are called “local” if
they not only globally measure frequencies and detail sizes, respectively, but
also indicate where they are located in the signal f(t).

There are many applications for the kind of signal information described
above — we explicitly mention signal classification and data compression. These
applications are described in more detail later, in the subsections below we
indicate how frequencies and detail sizes may be measured. Furthermore, we
will work out the aspects which are common to both transforms and illuminate
the respective differences. The transform results shall be visualized and we
will give an example which serves as an illustration for the above-mentioned
compactness of the respective signal representations.

The purpose of this chapter is to introduce the ideas underlying Fourier
and wavelet transforms, respectively. For more - in particular for mathematical
- details the reader is referred to the following chapters.

1.2.1 Transforms

All transforms of the signal f(t) described in this section share a common com-
putation principle: The signal is multiplied with a certain “analysis function”
and integrated about the time domain. In a symbolic notation the prescription
for performing a transform reads

+o00
f(t) trometerm / £ (w)9(@) du (L.1)

The “analysis function” g(u) characterizes the chosen transform. In general
it may be a complex function, the overline denotes the complex conjugate
entity. g(u) in a certain way depends on the parameters, i.e. frequencies or
detail sizes, to be measured (see below). Thus, by the computation principle
given above the transformed entity will depend on these parameters. In other
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words: the transformed entity again will be a function. These functions we
shall denote with “transform” or “transformed signal”.

Another common aspect of all transforms discussed in this section is in-
vertibility: From the transformed signal the original signal f(t) may be re-
constructed. This is essential for understanding the comparison experiment
carried out in sect. 1.2.6.

1.2.2 Fourier Transform

The parameter relevant for the Fourier transform is the circular frequency w,
the analysis function reads g, (u) = e’“¥. Thus the transformed signal is a
function depending on w and it is denoted with f(w):

+o0
flw) = / £ ()0 (a) dus (1.2)

Figure 1.1 illustrates the above computation recipe by plotting both curves
required for computing f (7). The signal is shown as a solid curve, the real part
of the analysis function g,(u) = e/*" is dashed. Obviously, it is an harmonic
oscillation with circular frequency w = .

()

Re(g, (u))

-1t

-2t

-3 L 2 4:; L
Fig. 1.1. Fourier transform: signal and analysis function

Why does f (m) measure the appearance of w = 7 in the signal? The
qualitative argument is as follows: If in some time interval the signal oscillates
with circular frequency w = w, the signal and the analysis function have a
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constant mutual phase shift in this interval and therefore provide a nonzero
contribution to f(r).

Yet there is no possibility to localize the appearance of the circular fre-
quency: If (the absolute value of) f(w) is “large”, we only know that the
signal contains the circular frequency =, but we do not know where it ap-
pears, since the analysis function extends over the whole real axis. The only
label parameterizing the analysis function is circular frequency.

1.2.3 Short Time Fourier Transform (STFT)

This transform sometimes also is called “Windowed Fourier Transform”
(WFT). The STFT looks for the appearance of the circular frequency w
at a certain time t. The corresponding analysis function reads: g(. . (u) =
g7 w(u — t). Here w(u) is a “window function”, usually centered about the
origin (for an example see below). In the expression w(u. — t) this window is
shifted to the desired time ¢.

Now the transformed signal depends on w and t! Since it also will depend
on the shape of the window function, it is denoted with f,{w,t):

+o0
fulw,t) = / ()30 @) du (1.3)

For a box window w of width 2, centered symmetrically about 0, w = w and
t = 8, the computation principle is illustrated in Fig. 1.2. Again the dashed
curve shows the real part of the analysis function g, s)(u); it is obviously now
localized at t = 8, since w(u — 8) denotes the box window, shifted by 8 units
to the right.

In general, the analysis function will be localized at the respective “analysis
time” t . Therefore the transform provides not just global information about
the appearance of a certain circular frequency, but in addition the time of this
appearance.

The procedure described so far has a disadvantage: If in the above example
one is interested in small details of the signal around ¢ = 8, the corresponding
frequency of the analysis function must be increased. As an example Fig. 1.2
is redrawn for w = 67 in Fig. 1.3.

Obviously the window width is constant and non-adaptive: If one is inter-
ested in very tiny signal details (high frequencies) in only a small neighborhood
of t = 8, eventually signal parts, which actually are “not of interest”, also will
be analyzed. Zooming into small details - analogously to a microscope - is not
supported.

1.2.4 Wavelet Transform

The wavelet transform has such a zooming property. In contrast to the Fourier
transform, the wavelet transform does not look for circular frequencies but
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f(u)

Re(g g, g,(u))

I
[t
L

-1

3 ) " . L L
0 1 2 3 4 5 8 7 8 9 10
u

Fig. 1.3. STFT: signal and analysis function for w = 6=«

rather for detail sizes a at a certain time ¢. Instead of detail sizes we also will
speak of “scale factors”, both notions will be used equivalently. As mentioned
already, high frequencies correspond to small details and vice versa, thus, when
comparing wavelet with Fourier transforms we have to take into account that
frequencies and detail sizes are inversely proportional to each other: There
exists a constant 3 such that
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g
= 14
@ W ( )
We shall now briefly indicate, how the wavelet transform is computed.

Consider a (real or complex) analysis function g, oscillating around the
+o00
u-axis (mathematically: [ g(u)du = 0) and decreasing rapidly for u — *oo.

—00
Such a function is called a “wavelet”. In eq. 1.4, relating scale factors with
frequencies, the constant g depends on g.

Starting from g consider the following family of functions: g, :)(u) =
%g (¥=t). The members of this family are generated from g by shifting the
function to t followed by shrinking (a < 1) or dilating (& > 1) the width of
the function. The wavelet transform now reads:

+oo
Lyf(a) = [ fwgao)de (15)
— o0
For the “Haar-wavelet”
1 0<u<}i
gluy=¢ -11<u<1
0 else

the computation of Ly f(a,t) with a = § and t = 8 is illustrated in Fig. 1.4.

Hw)

gi(u-tya)

1
11
1t
vt

0 —————————————————————————— T yT T O
1}

2r

-3 I I - i — i

0 1 2 3 4 5 -] 7 8 9 10
u

Fig. 1.4. Wavelet transform: signal and analysis function for ¢ = %

The reader may note that the Haar-wavelet, originally situated in the
interval [0,1) now has been shifted to the right by 8 units and its width has



1.2 Local Analysis 7

shrunk by the factor %, corresponding to the chosen values of ¢ and a. For
a = § and t = 8 we obtain Fig. 1.5.

fu)

-3 i I i n J L 1 1 1

Fig. 1.5. Wavelet transform: signal and analysis function for a = %

Compare Figs. 1.4 and 1.5 with Figs. 1.2 and 1.3 and note that the wavelet
transform shows the desired zooming property in contrast to the STFT: When
searching for smaller and smaller details (higher and higher frequencies) with
the wavelet transform, the corresponding analysis function is oscillating faster
and is contracted.

1.2.5 Visualization

Both the STFT fw(w, t) and the wavelet transform L, f(a,t) are functions
depending on two variables. A suitable visualization of these functions is of
essential importance in signal analysis. A wide-spread graphical representation
of two-dimensional functions is the use of contour lines. In signal analysis
one usually prefers the visualization of the absolute values of the respective
transforms by gray values. High values are coded with bright, low values with
dark gray values.

Figure 1.6 shows such a visualization for the STFT (above) and the wavelet

“transform (below). As a signal in both cases the “chirp” f(t) = sin(¢?) has
been used.

The chirp is an harmonic oscillation sin(wt), whose circular frequency in-
creases with ¢: w = t. The linear increase of frequency is clearly visible with
the STFT (see the upper part of Fig. 1.6).

Since (cf. eq. 1.4) detail size a and frequency w are inversely proportional
with respect to each other, for the wavelet transform one would expect a
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Ht)=sin{t®). Parameters:8 =5k =18 =tk =50,0=0.2

T

)=sin(). Scale parameters: &, ,=1.8,=1.2,, =150.

T

0 1 2 3 4 5 6 7 8 s 10
1

Fig. 1.6. Above: STFT of the chirp-signal f(t) = sin(t?). Below: Wavelet transform
of the chirp-signal f(t) = sin(t?).

behavior corresponding to a hyperbola (i.e. proportional to %) The lower
part of Fig. 1.6 shows exactly this behavior.

Since the STFT depends on ¢ and w, the gray value coding of the STFT has
been performed on the t-w-plane. This plane is also called “phase plane”, the
corresponding gray value coding “phase space representation” of the STFT.
Analogously the t-a-plane is called “scale plane” and the corresponding gray
value coding of the wavelet transform “scale space representation” of the
wavelet transform.
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1.2.6 Fourier vs. Wavelet Transform - A Comparison Experiment

In a certain sense, the zooming property of the wavelet transform ensures
that characteristic features of the analyzed signal on a certain scale are well
represented by the transform values corresponding to this scale factor, i.e. not
distributed among other scale factors. Moreover, these transform values will
be localized at the respective signal parts, where the above-mentioned features
are present. These concentration properties - both with respect to scale and
time - may be formulated mathematically in a more rigorous way; the purpose
of this section is, to give a plausibility argument for the above statement by
performing a comparison experiment with the Fourier transform.

The signal displayed in Fig. 1.7 is a section from the beginning of an
audio signal. Roughly in the middle, the sudden start of sound clearly can be
recognized.

1 L . . . L . "
© 1000 2000 3006 4000 5000 6000 7000 8000 9000

Fig. 1.7. “Attack-signal”

Such signals (“attack-signals”) shall locally, i.e. in a small neighborhood of
the point, where the sound starts, contain high frequencies, equivalently, there
will be drastic changes on a small scale. In such a situation the zooming prop-
erty of the wavelet transform should be advantageous when compared with
the Fourier transform. To confirm this conjecture, the following experiment
has been carried out:

1. Compute the Fourier transform of the signal, keep those 4% of the val-
ues of the transformed signal, having the largest absolute values. Put the
remaining transform values equal to zero and reconstruct the signal from
this modified transform (remember that, as stated in sect. 1.2.1, all trans-
forms discussed here are invertible).
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2. Perform the same procedure with the wavelet transform instead of the
Fourier transform.

The results of the experiment are shown in Fig. 1.8. The dashed curve shows
the result of the Fourier-reconstruction, the wavelet-reconstruction is dis-
played by +-symbols, the solid line represents the original signal. When com-
paring with Fig. 1.7, observe that the curves show an enlarged section of the
signal from Fig. 1.7 in a neighborhood of the point where the sound starts.

L 4

A L L . 2 s L "
3880 3700 3720 3740 3760 3780 3800 3820 3840

Fig. 1.8. “Attack-signal”: reconstructions

Obviously, when using the Fourier transform, the suppression of 96% of the
transform signal values - namely those transform signal values having lower
absolute values than the retained ones - leads to a global smoothing (low
pass filtering) and therefore the local peaks during the attack phase are not
reproduced any more. In contrast, applying the same suppression procedure
to the wavelet transform does not disturb the reproduction of these peaks.
This is a clear indication for the above-mentioned concentration properties of
the wavelet transform values.

As a final remark we should indicate that the original signal was not rep-
resented as a continuous-time signal, but it was discretely sampled. For such
signals there exist variants of the continuous formulae 1.2 and 1.5, respec-
tively, with which the above experiment has been carried out. These “discrete
transforms” shall be described in later sections.

Moreover, as with any wavelet transform application, the result of the
above experiment depends on the chosen wavelet g. The results displayed in
Fig. 1.8 have been obtained using the db4-wavelet described in a later section.
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1.3 A Roadmap for the Book

The topics sketched in this introduction will be described in more detail in
chap. 2. Questions like “what is an optimal window function for the Short
Time Fourier Transform?” or “how may visualizations as displayed in Fig. 1.6
be accomplished?” will be treated there. Moreover, we will indicate how the
original signal may be reconstructed from the respective transforms.

This is of crucial importance for applications like signal compression: There,
transforms of the original signal usually are computed in a first step. Subse-
quently these transforms are modified in such a way that the required storage
space for the transformed signal is reduced considerably. Finally, in the “de-
compression” step the signals are reconstructed from the modified transforms.
In chap. 2 also a brief survey is given of typical signal analysis applications
of the Short Time Fourier Transform and the wavelet transform, respectively.
Two industrial case studies are described in more detail. Section 2.4 contains
some exercises. Partly these exercises will be of “paper-and-pen-type”, but
they also will consist in writing computer programs.

As a programming platform we use the tool MATLAB, which is wide-
spread and a de-facto-standard in the engineering community. Of course it is
possible to use the book just as a reference guide to wavelet techniques without
performing any programming. For readers interested in using the software
described in this book and in developing their own programs, however, the use
of MATLAB will be a prerequisite. Readers having already some familiarity
with programming languages and looking for a compactly written introduction
to MATLAB are referred to [12]. This book provides a very nice and efficient
description of MATLAB’s main features. It is written in German; if this turns
out to be an obstacle, reference [30] is highly recommended.

The MATLAB software which is discussed in this book and has been written
by the author may be downloaded from

www.springeronline.com/de/3-540-23433-0

Most of it requires only the basis version of MATLAB. Some programs, how-
ever, make use of the MATLAB Wavelet Toolbox, a collection of wavelet-
related signal processing algorithms. Its use is described in the user’s guide
[24], which is not just a software bandbook. It is moreover a beautifully written
introduction to wavelet techniques. Since in the author’s opinion MATLAB
together with the wavelet toolbox will turn out to be a standard software
platform for wavelet-related signal processing, the present book also will pro-
vide a short introduction to the most important components of the MATLAB
Wavelet Toolbox.

In chapters 1 and 2, respectively, signals are considered to be continuous-
time signals, even though computerized versions of the algorithms described
there necessarily involve a discretization. A different perspective is given in
chap. 3: Here from the very beginning signals are discrete sequences of num-
bers and the wavelet transform described there is designed for such sequences.
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The corresponding notions, wavelet constructions, signal transform and re-
construction formulae are given in this chapter. Most important for practical
applications is the existence of fast algorithms both for transformation and re-
construction. They are also described in this chapter together with MATLAB
implementations. Thereafter again applications and case studies are presented.
In this context we shall also comment on real-time properties of fast wavelet
algorithms. Section 3.7 provides exercises.

Chapter 4 is devoted to a more detailed description of some additional
applications of the wavelet transform. First we shall focus on the most popular
application, namely data compression. Subsequently, an application related to
retrieving images from database management systems is described. Again at
the end of this chapter some exercises are presented.

As far as mathematics is concerned, we assume some familiarity of the
reader with basic calculus like integral calculus and complex numbers. We
shall give no rigorous proofs of mathematical statements, rather we want
to provide some intuitive insight into the essence of these statements and
their practical meaning. More mathematical details related to background
and applications of wavelets are collected in the appendix. It is intended to
support the reader, if he or she feels that some additional information would
be helpful to understand the main body of the text. Moreover, the appendix
contains solutions to selected problems from the exercises and provides a list
of frequently used symbols and notations.



