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Preface

During the academic year 1987-1988 the University of Wisconsin, Madison hosted
a Special Year of Lie Algebras. A Workshop on Lie Algebras, of which these are the
proceedings, inaugurated the special year. The principal focus of the year and of the
workshop was the long-standing problem of classifying the simple finite dimensional
Lie algebras over algebraically closed fields of prime characteristic. However, other
lectures at the workshop dealt with the related areas of algebraic groups, representation
theory, and Kac-Moody Lie algebras.

The titles of the fourteen papers presented at the workshop can be found at the end,
followed by a list of the participants in the workshop and their addresses. Nine of
these papers, (eight research articles and one expository article), comprise this volume.
The first paper, by Strade, develops the notion of the absolute toral rank of a modular
Lie algebra. This new concept combines earlier approaches of Block-Wilson and
Benkart-Osborn, and it seems to play a critical role in determining the structure of
simple Lie algebras of prime characteristic. The next three papers investigate various
topics related to the classification problem: embeddings of generalized Witt algebras;
isomorphism classes of Hamiltonian Lie algebras; and Lie algebras with subalgebras of
codimension one and their relationship to forms of Zassenhaus Lie algebras. The
determination of the restricted simple Lie algebras over algebraically closed fields of
prime characteristic has been accomplished recently by Block and Wilson. Serconek
and Wilson use this result as the starting point for their discussion of forms of
restricted simple algebras. In the next paper Varea employs the classification of the
rank one simple Lie algebras to investigate the subalgebra lattice of supersolvable Lie
algebras. The final three papers treat problems in Kac-Moody algebras.

We would like to take this opportunity to express our deep appreciation to the
National Science Foundation for its support (through grant #DMS 87-02928) of the
Special Year of Lie Algebras. Without its support this workshop and the other
activities of the special year would not have been possible. Thanks also go to Rolf
Farnsteiner, David Finston, Thomas Gregory, Helmut Strade, and Robert Wilson for
their participation in the events of the special year, and to the typists, Dee Frana and
Diane Reppert, and referees who helped in the preparation of this volume.

Georgia Benkart and J. Marshall Osborn June 1, 1988



Table of Contents

The absolute toral rank of a Lie algebra, by H. Strade .........ccoooevmevircrnnnnnnn. 1

Differential forms and the algebra W(m:n), by R.L. Wilson ......ccccccceviieinnnnnnae. 29

Isomorphism classes of Hamiltonian Lie algebras, by

G.M. Benkart, T.B. Gregory, ].M. Osborn, H. Strade, and R.L. Wilson ................ 42
On Lie algebras with a subalgebra of codimension one, by A.Elduque.................... 58
Forms of restricted simple Lie algebras, by S. Serconek and R.L. Wilson ............. 67
The subalgebra lattice of a supersolvable Lie algebra, by V.R. Varea .............c......... 81
Lie theoretic methods in cohomology theory, by R. Farnsteiner ............c.ccooocuu.... 93
An introduction to Schubert submodules, by M.E. Hall .......c.cccccooovnininiiinininicnnns 111
Kac-Moody modules and generalized Clifford algebras, by G.B. Seligman ............. 124
WOTKShOP LECHITES s.scusmmusssssossisssimsmsesenisnommmsssenssasvenssnsssisssessssssssasssnssssssssoiss sionsonsiissssshsssvassss 145

Workshop participants



THE ABSOLUTE TORAL RANK OF A LIE ALGEBRA

Helmut Strade

Abstract: The new concept of an absolute toral rank for subalgebras in arbitrary modular Lie
algebras is introduced. All nonsimple Lie algebras of absolute toral rank <2 are determined in
terms of smaller constituents. The final result is the first step towards the classification of all simple

modular Lie algebras.

In ion.

In the theory of modular Lie algebras there are several fundamental concepts and objects based
on the notion of a "toral rank". In a restricted Lie algebra, for example, the toral rank of a torus
gives the GF(p)-dimension of the root lattice determined by this torus. Tori of maximal toral rank
occur in the classification theory as very important objects. In the theory of non-restricted
semisimple Lie algebras the toral rank of a Cartan subalgebra (CSA) is a frequently used concept,
and the particular case that a Lie algebra has a CSA of toral rank one is a very central one.

In this note I shall introduce in §1 the concept of an "absolute toral rank TR(G,L) of a
subalgebra G in the Lie algebra L" for arbitrary Lie algebras over any field of characteristic
p # 0. This generalizes all of the above—mentioned concepts to arbitrary Lie algebras. Important
tools in this context are the concepts of a "restrictable Lie algebra" and a "p—envelope" of an
arbitrary Lie algebra [5] as well as their structure theory [7].

In §2 we will prove several results on the absolute toral rank, which generalize well-known
results on the dimension of tori in restricted Lie algebras.

In §3 we consider subalgebras CL(T ) of a modular Lie algebra L for a torus T in some
p-envelope of L. The main result in this section is a far-reaching extension of [8, Theorem 2.1]

which yields that under suitable conditions subalgebras of this type act triangulably on L.

Partially supported by NSF grant No. DMS-8702928.



Applications are given in section 4. There we describe all Lie algebras of absolute toral rank
<2 in terms of: solvable algebras, algebras having toral rank 1 with respect to some CSA, and
simple algebras of absolute toral rank 2 satisfying some additional assumption concerning their
CSA's. The final Theorem 4.8 may be considered a generalization of [3, Theorem 4.1.1] to
non-restricted algebras. All Lie algebras under consideration are finite dimensional over an
algebraically closed field F of characteristic p > 0.

This note extends results of a talk, which was given on the occasion of the opening workshop

of the "Special Year on Lie Algebras" in August, 1987 at Madison, Wisconsin.

§1. The toral structure of a Lie algebra.

In this chapter we will use the concept of a p—envelope [5] in order to transfer some methods,
which are very fruitful in the case of restricted Lie algebras, to arbitrary algebras.
For convenience we use in this note the following abbreviation:

Let L be a restricted algebra. Put
MT(L): = max{dim T|T is a torus of L} .
Using the notation CX(Y) = {x e X|[Y,x] =0} we recall

Lemma 1.1: Let L be a restricted Lie algebra. Suppose that T is a torus of L.

1)  Any T-invariant subspace W c L decomposes

W=CW(T)+[T,W].

2) If I isarestricted ideal of L and L/I is a torus, then there exists a torus T'> T such that

L=T+1L

Proof: [7,(1.4.4),(11.4.5)] o

Lemma 1.2: Let L be restricted.
1) If I is arestricted ideal of L, then



MT(L) = MT(/I) + MTQ) .
2)  Suppose that K1 is a restricted subalgebra and K2 is a restricted ideal of L. Then
MT(K,+K,) = M’I‘(Kl) + MT(K,) - MT(K,nK,) .

Proof: 1) Let n: L — L/I denote the canonical homomorphism.

For any torus T of L, n(T) and Tn1I are tori of L/l and I, respectively. This shows
that MT(L) < MT(L/I) + MT(I). In order to obtain the reverse inequality we apply Lemma 1.1: Let
T beatorusof I and R atorus of L/I. Then L has a torus T' containing T with

T+1= n—l(R) (put in Lemma 1.1 (2) n-l(R) for L). Therefore
dim(T") 2dim 7(T) +dm T'NnI2dim R +dim T .

This gives the result.
2) Applying 1) we obtain

MT(K1+K2) = MT(K1+K2/K2) + MT(KZ)
= MT(KI/KInKZ) + MT(KZ) = MT(Kl) - MT(Kanz) + MT(KZ). u}

A p-envelope of an arbitrary modular Lie algebra L is a triple (H,[p],i) consisting of a restricted
Lie algebra (H,[p]) and an embedding i: L — H such that i(L) generates H as a restricted
subalgebra [5]. We often consider L a subalgebra of H and call H a p-envelope of L. The
following notation will be used: L is always a finite dimensional Lie algebra and L P denotes a
finite dimensional p-envelope containing L as a subalgebra. If L and Lp are givenand G isa

subalgebra of L, then G b denotes the minimal restricted subalgebra of L P which contains G.

Remarks:
1) Suppose that L is nilpotent. Then Lp is nilpotent. Lp has a unique maximal torus. This
torus is contained in C(L p)' It is the set of all semisimple elements [7,(I1.1.3), (I1.4.2)].

A
2) Every representation p: L — gI(V) can be extended to a representation p: L p gl(V)
[7,(V.1.1)].
3) Suppose that G is a subalgebraof L and VcL is G-invariant. Then V is G_-invariant.

P
(This is a direct consequence of 2).)



A . . . A . . -
4) Suppose that p is a restricted representation, such that p(t) is a nilpotent transformation for

. . A . . .
every semisimple element t. Then p(LP) consists of nilpotent transformations.

T
Proof of 4): Forany xe€ Lp there exists a power t: = xP1" such that t is a semisimple element
of (L p,[p]). (We call this the semisimple part of the element x [7,(1.3.5)]). Our present

AL A-pr_ A C[plf A AL,
assumption implies that p(t) is nilpotent and p(x)* = p(x*** ) =p(t). Then p(x) is nilpotent. 0
It is well-known that for a semisimple element t, S(t) is nilpotent if and only if 6(1) =0.

Some main results on p-envelopes are summarized as follows.

Theorem 1.3 ([7]): Let L be a finite dimensional Lie algebra.

1) L possesses a finite dimensional p—envelope. If L is semisimple, it has a finite dimensional
semisimple p-envelope.

2) Any two p-envelopes of L of minimal dimension are isomorphic as ordinary Lie algebras.
3) Let (Hk,[p]k,ik) (k=1,2) be p-envelopes of L. Then there exists a (non—restricted)
homomorphism f: H1 — H2 and a subspace Jc C(Hz) such that

H2=f(Hl) ®J, foi1=i2, ker(f)CC(Hl).

Proof: 1) [7,I1.5.6)], 2) [7,(I1.5.8)] 3) [7,(11.5.6), (I1.5.7), (IL5.5)]. o

Corollary 1.4([4]): Let (Hk,[p]k,ik) (k=1,2) be two p-envelopes of L. Then there exists a

restricted isomorphism

¢: Hy/C(H)) = Hy/C(H))
with (p(il(x) + C(Hl)) = i2(x) + C(Hz) Vx e L.
Proof: We employ the notation and the result of Theorem 1.3 (3). Let x be an element of H1

with f(x) e C(Hz). Then f([x,il(L)]) =0 and hence [x,il(L)] c il(L) n ker(f) c ker(iz) = (0). This
implies, as Hl is generated by il(L), XE€ C(Hl). Therefore f induces an isomorphism



¢: HI/C(HI) — H2/C(I-12) with (p(il(x) + C(Hl)) = i2(x) + C(Hz) Vx e L.
Moreover for any h2 € H2 there exist h1 € I-ll and ze€ C(Hz) such that h2 = f(hl) +2z.

Hence we obtain for any x € H1

],

[p] P
by fx)

[p] 1 p
[f(x Dyl =[f(x - 7),f(hy)] - (ad £(x))"(f(h,)) = 0.

),

(p] P
This shows that f(x l) - f(x) € C(Hz). Then ¢ is a restricted isomorphism. 8]

The above result ensures, that the ensuing definition does not depend on the choice of the

p-envelope.

Definition: Let L be a Lie algebra and (H,[p],i) a p-envelope of L. Suppose that G is a
subalgebra of L and Gp is the restricted subalgebra of H generated by i(G).

1) TR(G,L): = max{dim T|T is a torus of Gp + C(H)/C(H)) is called the (absolute) toral rank of
GinL

2) For G=L we call TR(L): = TR(L,L) the absolute toral rank of L.

Remarks 1.5:
1) The above definition of the absolute toral rank of a Lie algebra L coincides with that given in
[4].
2) If L isrestricted and G is a torus of L then TR(G,L) = dim G/G n C(L) is the well-known
toral rank of G in L. If L is restricted then TR(L) = MT(L) - MT(C(L)), so if L is centerless
then TR(L) = MT(L).
3) Suppose that G is a nilpotent subalgebra (or even a CSA of L). Let H denote a p-envelope
of L and Gp the restricted subalgebra of H generated by G. Since G p is nilpotent it has a
unique maximal torus T. Then dim T/CT(L) is called the toral rank of L with respectto G
([8]). Note that, since L generates H as a restricted algebra,
Cp(L) = Cp(H) = Tn CH) .

Therefore,

dim T/C(L) = TR(T,H) = TR(G,L)
in this case.

In [8] Wilson gave a further description of the toral rank of L with respect to G in case that



G isa CSA of L. Then
L= ) L,©
aeA

decomposes into root spaces with respect to G. The dimension of the GF(p)—vector space spanned
by A is the toral rank of L with respect to G. The same holds if G is nilpotent but not
necessarily a CSA of L. This result yields a useful interpretation of TR(G,L) if G is nilpotent.

The concept of an "absolute toral rank of G in L" is the adequate concept which generalizes
and unifies several definitions involving the term of a "toral rank". G. B. Seligman recently asked
for a clear distinction between the various notions of "toral rank" and "rank". Our definition is a

reply to this request.
2. Pr ies of 1 ral rank.

In the following we will prove some properties of the absolute toral rank. Note that for
restricted semisimple Lie algebras TR and MT coincide. The following results are generalizations

from this more specific situation.

Proposition 2.1.: Let L be a Lie algebra, G a subalgebra, Lp a p-envelope and Gp the
p—subalgebra of L P generated by G.

1) TRG)L)= TR(G,LP) = TR(GP’LP)’ so that TR(L) = TR(LP).

2) TR(G,L) = MT(G p/C(L p)r\Gp) = MT(G p) - MT(C(L p)r\Gp) .

Proof: 1) follows directly from the definition.

2) The first equation follows directly from the definition of TR and MT. The second equation is
a consequence of Lemma 1.2(1). o
Proposition 2.2: Let Gc K c L be Lie algebras.

1) TR(G,K) < TR(G,L)

2) TR(GL) < TR(KL)

3) TR(G) £ TR(KK) .



Proof: Let Lp denote a p-envelope of L and Gp c Kp c Lp the restricted subalgebras generated
by G and K, respectively. Apply Proposition 2.1(2).

1) The inclusion C(Kp) n Gp bo C(Lp) n GP yields 1).

2) Let Tc Gp be a torus such that dim T/T n C(Lp) is maximal. T is also a torus of Kp. By
definition we obtain TR(K,L) 2 dim T/T n C(Lp) =TR(G,L).

3) Putting K=G and L =K we obtain from 1), 2) TR(G) < TR(G,K) and TR(G,K) < TR(K),

respectively. o
The following is a refinement of [4,(1.2)].

Proposition 2.3: Let I be an ideal of K and K a subalgebra of L. Suppose that L P isa

p—envelope of L and let K p denote the p-envelope of K in Lp‘ Put J:={x¢ Kp|[x,K]cI}.

Then
TR(K,L) = TR(K/) + TR(J.Lp) 2 TR(K/) + TR(L,L) 2 TR(K/I) + TRQ) .

Proof: a) We consider K contained in Kp‘ Then I is an ideal of Kp and J isa p-ideal of

Kp. Observe that there is a canonical isomorphism
: Kp/I/C(KP/[)"—»Kp/J.

Since Kp is restricted, the homomorphic image Kp/I is restrictable [7,(I1.2.4)]. Choose any
p—mapping [p]' on K p/[ and let G be the restricted subalgebra generated by K/I and [p]'

For any x € Kp the element
x+DP) — x[Plyp
centralizes KP/[ Thus we proved the implication
x+1€G+CEK/D * x[Pl 4 1 G +CE /D .

As K/I c G, this shows that

KPII=G+C(KP/I)

and hence

Gn C(Kpll) =C(@G) .



Therefore

G/CG) = K /1 / CK /D -

The above remark also proves that an element (x+I)[p]' + C(G) is mapped under this isomorphism

onto (x[p]+I) + C(Kp/I). Applying ¢ we obtain a restricted isomorphism
G/C(G) = K/

b) Since C(Lp) N I(p = C(Lp) nJ and G isa p-envelope of K/I, application of Proposition 2.1
and Lemma 1.2 yields

TR(K,L) = MT(KP) - MT(C(Lp) N Kp) = MT(Kp/J) + MTQ) - MT(C(LP) nJ)
= MT(G/C(G)) + TR(J,LP) = TR(K/I) + TRJ ,Lp) .
The remaining inequalities follow from the fact that I cJ and Proposition 2.2. a}
Proposition 2.4: Suppose that I is an ideal of L. Then TR(I,L) = TR(I).
Proof: Let L P be a p-envelope of L and Ip the p-subalgebra generated by I. Take any torus
T of Ip. Then Lp decomposes
Lp = CLP(T )+ [T,Lp] .
Since IlJ is an ideal of L v we have [T,L p] (c Ip‘ Thus
TnC(Ip)cTnC(Lp)cTnC(Ip) .
We conclude that TR(T,L p) =TR(T ,Ip). The definition now yields TR(I,L) = TR(I).
Pr ition 2.5:
1)  Suppose that Sl' S, are Lie algebras. Then
TR(S1 ® Sz) = TR(SI) + TR(SZ)

2)  Suppose that Sl’ 32 are ideals of a Lie algebra L. Then



’I'R(Sl+82) + TR(Slnsz) < TR(Sl) + TR(SZ)
3)  Suppose that S1 is a subalgebra and 52 is an ideal of L. Then
TR(S 1"'82) + 'I'R(Slnsz) < TR(51’51+52) + TR(SZ) .

Proof: We prove 3) first. Let Lp be a p-envelope of L and Ki the p-algebra generated by Si
(i=1,2). Then K: = K; +K, is a restricted subalgebra of Lp, generated by S1 + 82. Hence K
isa p-envelope of §; +S§,.

According to Lemma 1.2 we have
MT(K) = MT(KI) + MT(KZ) - MT(Klr'\Kz) s

Application of Proposition 2.1(2) to this equation yields

TR(K) + MT(C(K)) = TR(KI,K) + MT(C(K)nKl)

+ TR(K,) + MT(C(K,)) - TR(K,NK,) - MT(C(K;K,)) .

Since TR(K;NK,) 2 TR(S;nS,) we obtain from Proposition 2.1(1) and this equation

TR(S{,8;+S,) + TR(S,) - TR(S{+S,) - TR(S;NS,)
* 2 TR(KI,K) + TR(KZ) - TR(K) - TR(KNK,)

= MT(C(K)) - MT(CK)K ) - MT(C(K,) + MT(C(K,K,)) -

Let Tl,T2 denote the unique maximal tori of C(K) n Kl’ C(K'Z)’ respectively. Note that, as K‘Z
is an ideal of K,
[T,K] = [TYPLK] € (ad T)P®) € [T,K,] = 0.

Then T2 c C(K) and T1 + T2 is a torus of C(K). Since Tl n T2 is a torus of C(Kanz), we

have
MT(C(K)) + MT(C(Kanz)) 2 dim ('I‘l+T2) + dim(TlnT2) = dim T1 + dim T2
= MT(C(K)nKl) + MT(C(KZ)) ;

Thus the right hand side of (*) is nonnegative. This proves 3).
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2) is a direct consequence of 3) and Proposition 2.4, putting I = Sl.
1) Take in Proposition 2.3 S1 + 82 for K and L and S, for I Observe that S;+5,/8,= S,.
Then Proposition 2.3 yields

TR(S1 6382) 2 TR(SZ) + TR(Sl) .

In combination with 2) we obtain 1). a}
Some subalgebras are of major importance in the classification theory.

Definition: a) Let L be a Lie algebra, Lp a p-envelope of L and T atorus of L >

Decompose L into eigenspaces with respect to T

L= ) LD.
aeA
A subalgebra
%
K= Y LT, ®cAcT
ocd
is said to be a k—section (with respect to T) if ¢ is the GF(p)-vector space which is spanned by

GF(p)-independent roots L SRR relative to T.
b) Let H be a nilpotent subalgebra of L, Hp the p-subalgebra of L P generated by H
and T0 the unique maximal torus of Hp. A subalgebra K is called a k—section with respect to

H, ifitisa k-section with respect to TO'

Theorem 2.6: Let L be a Lie algebra and L P a p-envelope of L. Suppose that Tch isa
torus with TR(T ,Lp) =TR(). If K isa k-section with respect to T then

TR(K)<k.

Proof: Let R be the maximal torus of C(Lp). Then T + R is a torus with ’I'R(T+R,Lp) =TR(L)
and K isa k-section with respect to T + R. Hence we may assume that T contains the maximal
torus of C(Lp). Let Kp c Lp be the p-subalgebra generated by K and T0 a torus of Kp' We
have to prove that dim TOIC(KP) n TO <k. Put Tl: = CT(K). Since [TI’K] =0 we have

[Tl’Kp] =0 and [TI’TO] =0. Therefore T0 + T1 is a torus of Lp’ proving



dim (T, + Tl)/C(Lp) N (Ty#T) S TRA)
Observe that C(Lp) n (T0+T1) is a torus in C(Lp) and hence is contained T. Then
C(Lp) n ('I‘0+T1) c C(Lp) nT.
Thus we obtain

dim T - dim C(Lp) NnT=TR(L) 2 dim(TO+T1) —dim C(Lp) n (T0+T1)
*
2 dim T0+dimT1 —dim(TonTl) —dim C(Lp)nT.

Let OOy €O constitute a basis of the GF(p)-vector space spanned by ¢. Then

k
T1 =N ker(ai), which has codimension k in T:

(**) TR(L)=dimT/C(Lp)nT=k+dimTl—dim C(Lp)nT.
T0 n T1 is contained in Kp and centralizes K. Then T0 N T1 c C(Kp) and we obtain
(*¥*¥%) dimC(Kp)nTOZdim(TonTl).
Combining (*), (*¥), (***) one gets
k +dim T, —dimC(Lp)nT=TR(L)

2 dim TO + dim T1 —dim (TO n Tl) —dim C(Lp)nT
so that
k 2 dim To —dim (Ton Tl) 2> dim TOIC(Kp) nTO .

This is the result. o
Nilpoten )¢

In the classification theory [3] tori of maximal dimension play an important role. Let L be
simple and restricted and suppose that T is a torus of maximal dimension. Then CL(T) isa CSA
and CL(T ) is triangulable [8,9] (see below for definition). Moreover, any torus of a k-section with
respect to T has toral rank of most k.



Very surprisingly, things hardly change if we consider non—testricted Lie algebras using the
concepts of "p-envelope" and "absolute toral rank”. In the following let L denote a Lie algebra
with finite dimensional p-envelope Lp' If K is a subalgebra of L, then Kp denotes the
p—subalgebra of Lp generated by K.

Lemma 3.1: Let Tc T0 (t Lp be tori of L > The following are equivalent:
a) TR(TyL) = TR(T.L )
b) TO + C(Lp) =T+ C(Lp).

Proof: Since Tc TO we have dim TO + C(Lp)/C(L p) =dim T + C(Lp)/C(Lp) if and only if
To + C(Lp) =T+ C(Lp). o

Proposition 3.2: Let K be a subalgebraof L and T c Kp c Lp a torus which is either a maximal
torus of Kp or of toral rank TR(T, 'Lp) = TR(K,L). Then CK(T ) is a nilpotent subalgebra.

Proof: If T is a maximal torus of Kp then it is well-known that CK (T) isa CSA of K P
P

Therefore CK(T) (= CK (T) is nilpotent. Next assume that T is a torus of maximal toral rank and
P

TO c Kp a maximal torus of Kp containing T. The maximality of the toral rank implies that
TR(TO,L p) = TR('I‘,LP). Applying (3.1) we obtain T0 + C(Lp) =T+ C(Lp) and hence
CK('I' 0) = CK(T) The first part of the proof shows that CK(TO) is nilpotent. o

Note that in general CK('I') isnota CSA of K. The following theorem yields a

characterization of CSAs.

Proposition 3.3: Let Tc Lp be a maximal torus or a torus of maximal toral rank. The following
conditions are equivalent:

= TR X
2  TRC ML)=TRTL)
b) Tc C]_‘('I‘)p + C(L. p)’ where CL('I') b denotes the p-—algebra in Lp generated by CL(T ).
c) CL(T) isa CSA.

Proof: CL('I') is a nilpotent algebra by Proposition 3.2. Then CL(T )p is nilpotent, too, and has a



